Lecture Notes on
Calling Conventions

15-417/817: HOT Compilation
Frank Pfenning

Lecture 16
March 18, 2025

1 Introduction

In the last lecture we looked at data layout for positive types. Negative types correspond to com-
putation, so one might think that data layout does not apply. On the other hand, the subformula
property of bidirectional Sax should carry over from the positive to the negatives connectives.
The outcome is a set of “calling conventions” for functions or lazy records. These are still pretty
abstract, and we leave translation to a lower level open.

Before, we also test our intuition for the rules by describing compilation for the positives, later
to be augmented by the negatives.

2 Compilation for Positive Types

We have two judgments to compile:

IT'Fe<= A
I'Fs= A

where s is the syntactic class of expressions that synthesize their type.
The result should be a bidirectionally well-typed Snax program. We should check the theorems
we’d like to prove about the translation to guide our intuition. The first one is easy:

IfTFe<= AthenT= | [e] d :: (d < A). (not quite correct)

Here we write '™ for the context where every variables synthesizes its type. We postpone the case
for s = A for a few moments.

Pairs A ® B. We define
[(e1,e2)]d = snip= d.m
[[61]] d.7T1
snip*© d.m
[[62]] d.ﬂ'g
writed (_,_)

We see that it make sense for the final write operation to be silent, since [e;] d.7; promises to write
to d.m; and [ez] d.m2 promises to write to d.ma. Together, they already fill the pair.

LECTURE NOTES MARCH 18, 2025

Calling Conventions L16.2

The left rule requires us to consider how to translate synthesis, because in
match s ((z,y) = e)

the expression s synthesizes.
The first natural attempt fails.

IfT+s= AthenT= + [s]d :: (d = A). (incorrect)

This does not work because the destination d is determined by the translation of s rather than
given a priori. For example, if s is a variable z, then there is some address associated with « that
must be taken into account.

We can use the standard technique of providing [e] with a continuation [Reynolds, 1972]. In
our case, the continuation expects a destination as argument and returns a procedure P. Then the
correctness is a little harder to formulate, but not inordinately so.!

Ifl'Fs= Aand A,a= AF K(a):: dthenT'= ; A+ [s] K :: §. (almost correct)

This still doesn’t work. Let’s try (writing) for a meta-level abstraction to form a continuation).
[match s ((z,y) = e)]d = [s](Ac.read ¢ ((_,_) = [e]d))

The problem here is that the source variable z in e is represented by address 2.7, and y is repre-
sented by 2.7y, but this association is not explicit.

To be rigorous, we define a mapping p from variables to addresses of the same type that is
threaded through the translation. We write p(I') for applying this mapping to the variables in T',
with all resulting addresses synthesizing.

IfT'Fe <= Athen p(I') - [e]” d :: (d < A).
IfTFs= Aand A;a= At K(a) :: 6 then p(I") ; A+ [s]P K :: 6.

Specifically for pairs we get

[[(el,eg)ﬂpd = snip‘i d.7T1
Hel]]pd.ﬂ'l
snip*< d.my
[[82]]pd.7r2
writed (_,_)

[match s ((z,y) = €)]°d = [s](Ac.read ¢ ((_,_) = [e]* d))
where p' = (p,x — c.m1,y — c.m2)

For the example, we also need to translate variables (which synthesize), and we need to handle
the transition from synthesis to checking.

[z]P K = K(p(z))

[s]Pd = [s](Aa.id d a)

IThe standard notation K overlaps with our internal notion of continuation K, so we underline it when used at the
metalevel.

LECTURE NOTES MARCH 18, 2025

Calling Conventions L16.3

The last case uses the id=-<« version of the identity.

id=<«
a=AtFidda: (d<= A)

It is also the only place in the translation where the identity is introduced, and therefore the only
place where subtyping comes into play. This is satisfying, because in ND the only place for sub-
typing is the =< rule.

As an example, we consider

z:A® BF match z ((z,y) = (y,z)) <= B® A

If we start with p = (2 — ¢) then we can calculate the translation and we end up with the code
from last lecture. We highly encourage you to carry out this calculation.

It is also a straightforward exercise to fill in the remaining translation rules for the positive
fragment, so we skip them and move on to the negatives.

3 Function Types

In the original paper about data layout using Snax [DeYoung and Pfenning, 2022], we left negative
types they were the way in Sax [DeYoung et al., 2020] because we didn’t quite know how to handle
them from the layout perspective. We still don’t know everything, but at least in the linear case
matters have somewhat clarified.

Let’s recall the rules for function types A — B in Sax. Because the function type is negative,
right rules remain and left rules are turned into axioms.

I'e:AFP:(y:B)
—R —X
I' - write c ((z,y) = P) = (c: A— B) a:Ac:A— BlFreadc(a,b)::(b:B)

Annotating this as synthesis or checking, keeping in mind the rules of the game from the previous
lecture, we get

I''t= AFP: (y< B)
—R
' writec ((z,y) = P) :: (c<= A— B) a<=Ac=A— Btreadc(ab): (b= B)

—X

Whenever a type is decomposed into its components we should be able to compute the address of
the components.

Iyem = AR P (cmy < B)
—R
I'Fwritec((_,_) = P) = (c<= A— B)

—X
cmi<=Ac=A—BFreadc(_,_): (cma = B)

We have done this mechanically, so there are some questions. When we write the continuation
(_,_) = P we know where the program P can find its argument and its destination. But it is not
silent, because K = ((_,_) = P) still has to be written. In practice, there is also the question of
closure conversion which we put aside for now. Also, read ¢ (_,_) cannot be silent, because it
actually invokes the continuation K stored at c. This program reads from c.7; (the argument of

LECTURE NOTES MARCH 18, 2025

Calling Conventions L16.4

the function) and writes to c.my (the destination of the function). So the actual layout might be

something like this:
(c:A-B)—|(K)|A|B]|

where (K) is the address of the (Snax) continuation K. So the address calculations would be
slightly different than for positive pairs, because c.m # ¢, for example.
How do we now compile? We have

[\e.e]Pd = writed ((_,_) = [e]” d.m)
where p' = (p,z — d.m)

le1ea]? K = [e1](Aa.snip™ a.m
[e2]” a.my
snip~ a.my
read a (_,_)
K(am))

In order to see the calling conventions hiding here, we can compile [f z]” d where f and x are
variables with p = (f — ¢,z — a). Eliding explicit snips by using sequencing, we get

[fz]Pd = idecm a; % move argument x at a into place
read ¢ (_,_); % call function f
id d c.mo % move result to destination d

If we take the example of swap from the last lecture and reformulate it as a function f : A® B —
B ® A then the layout will be something like

(K)] A4 B B A

C.TT1.771 | C.TT1.TT2 | C.TT2.TT1 | C.TTQ.TTQ

C

Here, the first two slots are taken by the arguments of type A and B, and the second two slots are
taken up by the results of type B and A. We also have (the address of) the code. In short form, this

would be
()=
id c.mo.m ey
id c.mo.m ..M

which is about as efficient as we could hope. In addition, before a call to f the arguments have to
be moved into place, and after the return of f the have to be moved to their destination.
4 Lazy Records

Lazy records work analogously, but are a bit simpler. We go directly to the bidirectional form.

(F F Py (l‘g = Ag)) (Vf S L)
I'F write ¢ {{(z¢) = Prlocr = (c <= &{l: As}oer)

&R

(kel)
c= &{l: Ap}tocr Fread c k(a) :: (a = Ag)

&X

LECTURE NOTES MARCH 18, 2025

Calling Conventions L16.5

As may be expected, we reuse the projections a.l, although the actual address calculations will
differ because the continuation needs to be stored as well. This parallels the way function types
differ from pairs.

(THPy:: (el <= Ay)) (VelL)
I'F write ¢ {{(_) = Prlier : (c <= &{l: Ap}oer)

&R

(kel)
c= &{l: Agyper Fread c k(L) = (c.k = Ayp)

&X

We also have: B
[{¢{ = es}]Pd = writed {{(_) = [e]”d.l}

le.k]P K = le]’(Aa.snip™ a.k
r(iad ak(l)
K(aF))

5 Upshifts

Downshifts interrupt the layout patterns by storing an arbitrary address, so we do the same here.
The rules may look a little bit degenerate because we are in the purely linear case, but the upshift
can still be justified as building a so-called thunk as in call-by-push-value [Levy, 2001].

'EP:(x<=A)
I'F write ¢ ((x) = P) :: (c < 14)

L

'R

c=TAFreadc (a): (a= A)

These rules remain the same as in Snax because no address calculation is performed. Instead,
addresses are stored and retrieved.

[susp e]’d = writed ((z) = [e]’x)
[e.forcel? K = [e]’(Aa.cut z
read a ()
K(x))

6 Further Questions

In our presentation of Snax, we have presumed a linear type system, which is the best-case sce-
nario. Still, there are several questions we haven’t tackled. One is: In ND, we presuppose (and
maintain) that all variables in the context are distinct. What about in Snax? Now that the context
doesn’t just contain variables but addresses (which include projections) we need a counterpart
of the distinctness condition. See DeYoung and Pfenning [2022] for such a condition that entails
suitable forms of preservation and progress for the dynamics.

The intuition behind synthesis and checking seems clear, but can we elaborate it to a more pre-
cisely defined algorithm for type-checking? How does this account for the conditions mentioned
in the previous paragraph?

LECTURE NOTES MARCH 18, 2025

Calling Conventions L16.6

Along similar lines, the calling conventions that arise may be questionable in the case contrac-
tion is permitted. The problem is that multiple calls to the same function would interfere with
each other of the allocation for the function argument and destination were shared. It appears
that for positive types, the presence of contraction is most naturally and efficiently implemented
by sharing, but for negative types contraction may actually need to be copying. In a sequential
implementation, this copying may be akin to a creating a fresh stack frame.

The considerations for negative types interact with closure conversion. Precisely, what is this
interaction and how can it be managed in a lower-level implementation?

Optimizations, such as cut/id reduction or vertical and horizontal reuse will have to be re-
considered. A step in that direction has been taken by Ng [2024], but it differs from the current
implementation in the research compiler. How do we formulate such optimizations, and prove
their dynamics correct?

References

Henry DeYoung and Frank Pfenning. Data layout from a type-theoretic perspective. In 38th Con-
ference on the Mathematical Foundations of Programming Semantics (MFPS 2022). Electronic Notes
in Theoretical Informatics and Computer Science 1, 2022. URL https://arxiv.org/abs/
2212.06321v6. Invited paper. Extended version available at https://arxiv.org/abs/
2212.06321v3.pdf.

Henry DeYoung, Frank Pfenning, and Klaas Pruiksma. Semi-axiomatic sequent calculus. In Z. Ar-
iola, editor, 5th International Conference on Formal Structures for Computation and Deduction (FSCD
2020), pages 29:1-29:22, Paris, France, June 2020. LIPIcs 167.

Paul Blain Levy. Call-by-Push-Value. PhD thesis, University of London, 2001.

Daniel Ng. Memory reuse in linear functional computation. Honors thesis, Carnegie Mellon
University, May 2024. URL http://www.cs.cmu.edu/~fp/courses/15417-s25/misc/
Ng24.pdf.

John C. Reynolds. Definitional interpreters for higher-order programming languages. In Proceed-
ings of the ACM Annual Conference, pages 717-740, Boston, Massachusetts, August 1972. ACM
Press. Reprinted in Higher-Order and Symbolic Computation, 11(4), pp.363-397, 1998.

LECTURE NOTES MARCH 18, 2025

https://arxiv.org/abs/2212.06321v6
https://arxiv.org/abs/2212.06321v6
https://arxiv.org/abs/2212.06321v3.pdf
https://arxiv.org/abs/2212.06321v3.pdf
http://www.cs.cmu.edu/~fp/courses/15417-s25/misc/Ng24.pdf
http://www.cs.cmu.edu/~fp/courses/15417-s25/misc/Ng24.pdf

	Introduction
	Compilation for Positive Types
	Function Types
	Lazy Records
	Upshifts
	Further Questions

