
Lecture Notes on
Data Layout

15-417/817: HOT Compilation
Frank Pfenning

Lecture 15
March 13, 2025

1 Introduction

In today’s lecture we discover that the Sax language we have been working with gives us quite
direct access to understanding issues of data layout. It is still more abstract, say, then data layout
specification in a typical application binary interface and that is important, because we don’t want
to specialize our compiler to a particular architecture at this point. Our approach is to say that
abstract data layout is characterized by the ability to compute some addresses from others. For
example, if we have the address c : A ⊗ B, we should have a way to denote the address of A
(which will end up being c.π1) and also the address of B (which will be c.π2). This is actually
quite related to the level of abstraction in the specification of the C programming language. It is
sufficient, for example, to distinguish between a flat layout of a pair, and the layout of a pair using
two addresses. The significance of these choices has been investigated by Morrisett [1995] but not
captured type-theoretically. We call the resulting language Snax as an amalgam of Sax and Snip
(the latter being the characteristic new rules in our language).

We stumbled upon issues of address computation by investigating the metatheory of Sax [DeY-
oung et al., 2020], trying to recover a theorem that is analogous to cut elimination in sequent cal-
culi [Gentzen, 1935] and normalization in natural deduction [Prawitz, 1965]. This path is mapped
out by DeYoung and Pfenning [2022]. Here, we take a different approach, via bidirectional type-
checking for Sax [Somayyajula and Pfenning, 2023, Somayyajula, 2024]. These lecture notes repre-
sent some recent joint work with Joanna Boyland.

2 Bidirectional Typechecking, More Abstractly

Bidirectional typechecking for terms based on natural deduction can be seen as originating from
various sources. For one, it codifies some form of flow of information throughout the term, so
the term itself does not need to carry types [Dunfield and Krishnaswami, 2022]. Another is that
it identifies verifications, that is, proofs that only proceed by decomposing a given proposition
without having to introduce new ones [Dummett, 1991, Martin-Löf, 1983]. This is a little stronger
than simply the subformula property, because we could stick to subformulas without arriving at
them purely by decomposition. Verifications also have the property that they never include the
introduction of a connective followed by its elimination; often we say they are normal. From a
programming language perspective this means we never have a destructor applied to a constructor
for a type, that is, no computation can take place.

LECTURE NOTES MARCH 13, 2025

Data Layout L15.2

We can rescue the programming language perspective in more than one way. In ND, we have
metavariables that stand for program expressions which are given explicit types at the top-level.
The definitions of these metavariables can also be mutually recursive. A less drastic approach is
the introduce a type-annotated expression (e : A). One downside of the latter approach is that it
makes it difficult to give multiple types to the same expression, which is very useful in the case of
adjoint types where the same expression may have multiple modes.

Gentzen’s sequent calculus represents an almost extremely point with respect to this discus-
sion, because bidirectional checking for the sequent calculus is actually unidirectional. That’s because
all rules except cut decompose propositions when read from the conclusion to the premises. Cut
then, is the sequent calculus’s “way out” to allow for computation.

But what about the semi-axiomatic sequent calculus? Can we define a “bidirectional” system
for Sax that (a) satisfies the idea behind verifications that a proof only decomposes the given
proposition (and therefore also has the subformula property), and (b) implies a simple algorithm
for typechecking for Sax programs without any additional type information (except as given by
typing of metavariables)?

The answer is “yes”! We discuss in 5 what this has to do with data layout.

3 Bidirectional Typing for Sax

In natural deduction, we could write

x1 ⇒ A1, . . . , xn ⇒ An ⊢ e ⇐ A
x1 ⇒ A1, . . . , xn ⇒ An ⊢ e ⇒ A

That is, all variables synthesize their types, and expressions e could either check against a given
type A or synthesize a type A. In the sequent calculus, we just have a single judgment form

x1 ⇒ A1, . . . , xn ⇒ An ⊢ M ⇐ A

because we always know the type of the succedent and each antecedent. Here we wrote M for a
hypothetical term assignment to the sequent calculus.

It turns out, in Sax each antecedent could check or synthesize, and so could the conclusion.
That is, a Sax sequent has the form Γ ⊢ P :: δ where

Antecedents Γ ::= x ⇒ A | x ⇐ A | Γ1,Γ2 | ·
Succedent δ ::= x ⇐ A | x ⇒ A

One might think of it as quadridirectional because we can separately have two directions on each
side of the turnstile.

Let’s now analyze the direction of decomposition for each of the rules for the positive connec-
tives. We do this for the linear calculus because it is the simplest, but the analysis carries over to
nonlinear and even adjoint deduction.

Tensor A⊗B. The right rule ⊗R from the sequent calculus is replaced by an axiom. The direction
of decomposition says that if we know the succedent then we can deduce both premises.

a : A, b : B ⊢ write c (a, b) :: (c : A⊗B)
⊗X

a ⇐ A, b ⇐ B ⊢ write c (a, b) :: (c ⇐ A⊗B)
⊗X

We could also argue that if a ⇒ A and b ⇒ B we can synthesize c ⇒ A⊗ B. However, this is not
in the direction of decomposition of a connective, so it doesn’t satisfy one of our design criteria.

LECTURE NOTES MARCH 13, 2025

Data Layout L15.3

The left rule of the sequent calculus remain a left rule.

Γ, x : A, y : B ⊢ P :: δ

Γ, c : A⊗B ⊢ read c ((x, y) ⇒ P) :: δ
⊗L

Γ, x ⇒ A, y ⇒ B ⊢ P :: δ

Γ, c ⇒ A⊗B ⊢ read c ((x, y) ⇒ P) :: δ
⊗L

If we are given the type of C in the conclusion, then the types of the components in the premis are
also known. We may have to think a little about whether δ in the succedent should be either of the
two rules or possibly just d ⇐ D.

We summarize the rules, omitting the proof terms to focus in on the essential aspects of the
rules.

a ⇐ A, b ⇐ B ⊢ c ⇐ A⊗B
⊗X

Γ, x ⇒ A, y ⇒ B ⊢ δ

Γ, c ⇒ A⊗B ⊢ δ
⊗L

We can almost do an example already, such as c : A ⊗ B ⊢ d : B ⊗ A, but we lack the identity
rule. So that is next.

Identity. The usual rule

b : A ⊢ id a b :: (a : A)
id

admits three different specializations:

b ⇒ A ⊢ a ⇒ A
id⇒⇒

b ⇐ A ⊢ a ⇐ A
id⇐⇐

B = A

b ⇒ B ⊢ a ⇐ A
id⇒⇐

In the first two, we propagate information from left to right or from right to left. In the third rule,
we have to compare two sources of information, made explicit in an equality check explicit. In a
system with subtyping, this would become B ≤ A, as defined in the usual coinductive manner.

A possible fourth rule does not actually make sense, because in

b ⇐ A ⊢ a ⇒ A
id⇐ ⇒??

both sides would require us to know A already (which we don’t, given the directions).
With the given rules, we think we should be able to prove c ⇒ A⊗B ⊢ d ⇐ B⊗A, but actually

we can’t!
??

a ⇒ A, b ⇒ B ⊢ d ⇐ B ⊗A

c ⇒ A⊗B ⊢ d ⇐ B ⊗A
⊗L

The problem is that the directions of a and b don’t match the direction of the axiom ⊗X . We need
one more rule which looks like a version of the cut rule, but does not introduce any new formulas.
We therefore call it snip.

Γ ⊢ x ⇐ A ∆, x ⇐ A ⊢ δ

Γ ; ∆ ⊢ δ
snip⇐⇐

This rule is acceptable because in the second premise we will be given D and we will be able to
compute A (and according to out general conventions, x is fresh). We can then check the first
premise. What we don’t specify here is how to split the antecedents in the conclusion, but we

LECTURE NOTES MARCH 13, 2025

Data Layout L15.4

already know how to deal with that separately (for example, using the additive approach to re-
source management).

Note that this rule does not violate either of our two design principles. A will be a subformula
of D or some formula in ∆, and, in fact, will be computed by some decomposition.

We can use snip to complete our little proof.

B = B

y ⇒ B ⊢ u ⇐ B
id⇒⇐

A = A

x ⇒ A ⊢ w ⇐ A
id⇒⇐

u ⇐ B,w ⇐ A ⊢ d ⇐ B ⊗A
⊗X

x ⇒ A, u ⇐ B ⊢ d ⇐ B ⊗A
snip⇐⇐

x ⇒ A, y ⇒ B ⊢ d ⇐ B ⊗A
snip⇐⇐

c ⇒ A⊗B ⊢ d ⇐ B ⊗A
⊗L

Written as a proof term, we would have:

proc swap (d : B * A) (c : A * B) =
read c (x, y)
snip u

id u y
snip w

id w x
write d (u, w)

Here, we have left out the directional information from snip and id because it is visible above
and could easily be inferred.

If we didn’t care about the direction of information flow, we could think of a snip as a cut
(which is is, dynamically), and apply the cut/id optimization twice.

proc swap (d : B * A) (c : A * B) =
read c (x, y)
write d (y, x)

More Snips, and Cut. As for the identity, there are two more snips, and there is the real cut
(which requires a type annotation).

Γ ⊢ x ⇒ A ∆, x ⇒ A ⊢ δ

Γ ; ∆ ⊢ δ
snip⇒⇒

Γ ⊢ x ⇒ A A = B ∆, x ⇐ B ⊢ δ

Γ ; ∆ ⊢ δ
snip⇒⇐

In the last rule, snip⇒⇐ we can replace A = B with A ≤ B if we support subtyping.
The last rule is not a snip, but a proper cut in the sense the that cut formula A must be present

in the syntax.
Γ ⊢ x ⇐ A ∆, x ⇒ A ⊢ δ

Γ ; ∆ ⊢ δ
cutA

Sums ⊕{ℓ : Aℓ}ℓ∈L. For the axiom, as for A⊗B, the information flows from the succedent to the
antecedent.

(k ∈ L)

a ⇐ Ak ⊢ c ⇐ ⊕{ℓ : Aℓ}ℓ∈L
⊕X

LECTURE NOTES MARCH 13, 2025

Data Layout L15.5

The left rule is a little trickier.

(Γ, xℓ ⇒ Aℓ ⊢ δ) (∀ℓ ∈ L)

Γ, c ⇒ ⊕{ℓ : Aℓ}ℓ∈L ⊢ δ
⊕L??

The difficulty here is that if δ = (d ⇒ D) then each branch has to synthesize exactly the same type
D. In the presence of subtyping, this doesn’t make sense: we’d have to merge all the Dℓ from all
the branches. Also, if we think back to the sequent calculus, the succedent is always d ⇐ D, so it
would be elegant if we can keep the same rule. And, indeed, we can!

(Γ, xℓ ⇒ Aℓ ⊢ d ⇐ D) (∀ℓ ∈ L)

Γ, c ⇒ ⊕{ℓ : Aℓ}ℓ∈L ⊢ d ⇐ D
⊕L

Now the problem from before goes away because we have D in the conclusion and can propagate
it to all premises.

If empty sums are allowed, the general rule is even more problematic. Without a premise,
we’d have

Γ, c ⇒ ⊕{} ⊢ d ⇒ D
0L??

and we see that is entirely indeterminate. It therefore would violate the principles of our construc-
tion.

For uniformity and simplicity we therefore universally restrict δ when it appears as a variable
in the rules to be of the form d ⇐ D.

Unit 1. The unit doesn’t present any interesting new issues.

· ⊢ c ⇐ 1
1X

Γ ⊢ δ

Γ, c ⇒ 1 ⊢ δ
1L

4 Summary of Bidirectional Rules for Sax, Positive Types

The rules are summarized in Figure 1, formulated with subtyping. Not all of these rules appear
to be needed. For example, only some of the rules appear when translating from the cut-free
sequent calculus or bidirectional natural deductions. In particular, the rule snip⇒⇐ appears to be
redundant because it can be composed from one of the other snips and the identity id⇒⇐. We
therefore exclude if from consideration for now. And, of course, a true cut is not needed when
translating from the pure sequent calculus. Looking at the negative connectives in the next lecture
might shed more light on these questions. This is subject of ongoing research, and at this point we
do not have all the answers.

5 Data Layout Using Subformulas

The key idea behind data layout is that from the address of a compound type like A ⊗ B we
can compute the addresses of A and B. But that matches exactly the principles underlying our
construction of the bidirectional rules: we decompose a type into into its components.

For this purpose we introduce the following syntax for addresses, which were previously en-
tirely abstract. We use variables x for “roots” that are allocated by cuts. Note that we do not need

LECTURE NOTES MARCH 13, 2025

Data Layout L15.6

b ⇒ A ⊢ a ⇒ A
id⇒⇒

b ⇐ A ⊢ a ⇐ A
id⇐⇐

B ≤ A

b ⇒ B ⊢ a ⇐ A
id⇒⇐

Γ ⊢ x ⇐ A ∆, x ⇐ A ⊢ δ

Γ ; ∆ ⊢ δ
snip⇐⇐

Γ ⊢ x ⇒ A ∆, x ⇒ A ⊢ δ

Γ ; ∆ ⊢ δ
snip⇒⇒

[
Γ ⊢ x ⇒ A A ≤ B ∆, x ⇐ B ⊢ δ

Γ ; ∆ ⊢ δ
snip⇒⇐

] Γ ⊢ x ⇐ A ∆, x ⇒ A ⊢ δ

Γ ; ∆ ⊢ δ
cutA

a ⇐ A, b ⇐ B ⊢ c ⇐ A⊗B
⊗X

Γ, x ⇒ A, y ⇒ B ⊢ δ

Γ, c ⇒ A⊗B ⊢ δ
⊗L

(k ∈ L)

a ⇐ Ak ⊢ c ⇐ ⊕{ℓ : Aℓ}ℓ∈L
⊕X

(Γ, xℓ ⇒ Aℓ ⊢ δ) (∀ℓ ∈ L)

Γ, c ⇒ ⊕{ℓ : Aℓ}ℓ∈L ⊢ δ
⊕L

· ⊢ c ⇐ 1
1X

Γ ⊢ δ

Γ, c ⇒ 1 ⊢ δ
1L

Figure 1: Bidirectional Rules for Sax, δ is d ⇐ D

any projections for type 1, because the unit () has no components.

Addresses a ::= x (root)
| a.π1 | a.π2 (A⊗B)

| a.k (⊕{ℓ : Aℓ}ℓ∈L

Pairs A⊗B. We just follow the direction in which information is propagated.

c.π1 ⇐ A, c.π2 ⇐ B ⊢ c ⇐ A⊗B
⊗X

Γ, c.π1 ⇒ A, c.π2 ⇒ B ⊢ δ

Γ, c ⇒ A⊗B ⊢ δ
⊗L

When we think about the expressions, something unexpected comes up. Consider the rule ⊗X .
This rule doesn’t actually write to c as before, when there were addresses a and b to be written.
Here, it just calculates addresses! A similar observation holds for ⊗L: instead of reading from a
memory cell, it just calculates the addresses of the components of the pair.

c.π1 ⇐ A, c.π2 ⇐ B ⊢ write c (_,_) :: (c ⇐ A⊗B)
⊗X

Γ, c.π1 ⇒ A, c.π2 ⇒ B ⊢ P :: δ

Γ, c ⇒ A⊗B ⊢ read c ((_,_) ⇒ P) :: δ
⊗L

Whether the reads and writes at type A ⊗ B are entirely silent depends on lower-level details
of the implementation. For example, if the dynamics is parallel, they may represent a point of

LECTURE NOTES MARCH 13, 2025

Data Layout L15.7

synchronization where the read waits on the write to occur. If the dynamics is sequential, then
the writes would appear before reads and the only effect of the operation is the calculation of
component addresses.

Identity. For the third identity rule id⇒⇐ we have to addresses and we have to move data from
one place to the other. How exactly this data movement occurs is a matter of a lower level of
abstraction, but after it all projections of the address to be written should be defined, as long as all
necessary projections of the address to be read are defined.

B ≤ A

b ⇒ B ⊢ id a b :: (a ⇐ A)
id⇒⇐

On the other hand, the two unidirectional version of identity don’t really accomplish anything.
Unlike before, no data movement is involved because the data are already in the correct place.[

a ⇒ A ⊢ a ⇒ A
id⇒⇒

] [
a ⇐ A ⊢ a ⇐ A

id⇐⇐
]

Snips. Looking at the rule snip⇐⇐ with proof terms, we see that it passes on the address com-
puted in the second premise to the first premise. Unlike the cut, this rule does not allocate a new
cell: the address a already preexists because it is some projection of d (if δ = (d ⇐ D)). With
negative types (see next lecture) it would also be a projection of some address in ∆.

Γ ⊢ P :: a ⇐ A ∆, a ⇐ A ⊢ Q :: δ

Γ ; ∆ ⊢ snip a P Q :: δ
snip⇐⇐

The snip⇒⇒ rule works symmetrically, transferring an address computed in the first premise to
the second

Γ ⊢ P :: a ⇒ A ∆, a ⇒ A ⊢ A :: δ

Γ ; ∆ ⊢ snip a P Q :: δ
snip⇒⇒

Now we can rephrase the earlier example.

proc swap (d : B * A) (c : A * B) =
read c (x, y)
snip u

id u y
snip w

id w x
write d (u, w)

as

proc swap (d : B * A) (c : A * B) =
read c (_, _)
snip d.pi1

id d.pi1 c.pi2
snip d.pi2

id d.pi1 c.pi1
write d (_, _)

If we assume that address calculation do not need to be explicitly given, and write snip a P Q as
P ; Q we can abbreviate this as

LECTURE NOTES MARCH 13, 2025

Data Layout L15.8

proc swap (d : B * A) (c : A * B) =
id d.pi1 c.pi2 ;
id d.pi1 c.pi1

which is exactly the intuitive data movement from source c to destination d.

Cut. Cut, as before, just allocates a fresh cell which we call root.

Γ ⊢ P :: (x ⇐ A) ∆, x ⇒ A ⊢ Q :: δ

Γ ; ∆ ⊢ cut (x : A) P Q :: δ
cutx

In order to remind ourselves of the freshness condition, we write α as a superscript of the rule.
One point here: if we think about allocation at a lower level of abstraction, we need to allocate
sufficient space for data of type A so that all projections of α (as predetermined by the type) can
be written and read.

Sums. Are a little more complex than pairs, because the axiom/rule actually do have to write/read
something: a label. When the small value at an address c in Sax is k(a), then in Snax the address of
a is c.k. In concrete terms, we like to think of this as the tag k and the representation of the tagged
data to be side by side.

(k ∈ L)

a ⇐ Ak ⊢ c ⇐ ⊕{ℓ : Aℓ}ℓ∈L
⊕X

(Γ, xℓ ⇒ Aℓ ⊢ δ) (∀ℓ ∈ L)

Γ, c ⇒ ⊕{ℓ : Aℓ}ℓ∈L ⊢ δ
⊕L

These become
(k ∈ L)

a.k ⇐ Ak ⊢ write c k(_) :: c ⇐ ⊕{ℓ : Aℓ}ℓ∈L
⊕X

(Γ, c.ℓ ⇒ Aℓ ⊢ Pℓ :: δ) (∀ℓ ∈ L)

Γ, c ⇒ ⊕{ℓ : Aℓ}ℓ∈L ⊢ read c {ℓ(_) ⇒ Pℓ}ℓ∈L :: δ
⊕L

6 Recursive Types

Consider the recursive type

type nat = +{’zero : 1, ’succ : nat}

The difficulty is that if we see cut (x : nat) P Q we do not know how much space to allocate for
x. A complex solution might be to allocate some initial space and then reallocate more space if it
grows. A simpler solution is to require the recursion to be guarded so that somewhere within a
recursive type there is a pointer. But what is a pointer here? Not surprisingly, in Snax it is just an
address.

In the lecture on adjoint types, we have seen the type ↓kmAk which represents a way to include
data of type A at mode k in data at mode m. Because the shift is positive, we can pattern match
againt values ⟨v⟩ and we evaluate e in ⟨e⟩. We usurp this mechanism here. Even though Ak is a
component of ↓kmAk we imagine a representation where it is inhabited by an explicit address, as
in ⟨a⟩. For recursive types, this is mostly a shift from a mode to itself. For example, if we make
modes explicit as with adjoint types

LECTURE NOTES MARCH 13, 2025

Data Layout L15.9

type nat[k] = +{’zero : 1, ’succ : <nat[k]>}
type list[m k] = +{’nil : 1, ’cons : <nat[k]> * <list[m k]>}

would desugar into

natk = ⊕{zero : 1, succ : ↓kknatk}
listm = ⊕{nil : 1, cons : ↓kmnatk ⊗ ↓mmlistm}

We can picture a concrete layout for type nat as

zero XXX

succ a

where XXX is unused because () : 1 would be size 0 allocation, and a is the address of a cell
again of type nat. Then for lists

nil XXX XXX

cons a b

where a is an address of type nat and b is an address of type list.
We can achieve these layout conventions with the following, specializing the rules to a single

linear mode as in the earlier parts of this lecture.

a ⇐ A ⊢ write c ⟨a⟩ :: (c ⇐ ↓A)
↓X

Γ, x ⇒ A ⊢ P :: δ

Γ, c ⇒ ↓A ⊢ read c (⟨x⟩ ⇒ P) :: δ
↓L

These are actually just the rules of bidirectional Sax because we don’t replace the addresses inside
⟨−⟩ by underscores. The reason is that the type is inhabited by an explicit address, and we need
to read or write the explicit address.

We discuss the upshift (as a negative connective) in the next lecture.

7 Translations and Justifications

How can we justify the particular set or subset of the rules? One way is to describe a particular al-
gorithm for typechecking and prove suitable properties for it. On a related note, we could directly
prove a subformula propery for cut-free derivations. Another would be to show that translations
from standard systems like the sequent calculus or bidirectional natural deduction preserve typ-
ing. You can find some considerations along these lines in the literature [Somayyajula, 2024].

The translation from ND to Snax is actually relevant if you’d like to build a compiler, so we’ll
discuss this in the next lecture.

8 Summary

The rules for Snax are in Figure 2. With them, we have a sound type-theoretic foundation for
compact layout of data structures. We can also see it as a generalization of Sax, because there is a
uniform translation of Sax into Snax that (intuitively) preserves the simple Sax layout structure.

LECTURE NOTES MARCH 13, 2025

Data Layout L15.10

B ≤ A

b ⇒ B ⊢ id a b :: (a ⇐ A)
id⇒⇐

Γ ⊢ P :: (a ⇐ A) ∆, a ⇐ A ⊢ Q :: δ

Γ ; ∆ ⊢ snip a P Q :: δ
snip⇐⇐

Γ ⊢ P :: (a ⇒ A) ∆, a ⇒ A ⊢ Q :: δ

Γ ; ∆ ⊢ snip a P Q :: δ
snip⇒⇒

Γ ⊢ P :: (x ⇐ A) ∆, x ⇒ A ⊢ Q :: δ

Γ ; ∆ ⊢ cut (x : A) P Q :: δ
cutx

c.π1 ⇐ A, c.π2 ⇐ B ⊢ write c (_,_) :: (c ⇐ A⊗B)
⊗X

Γ, c.π1 ⇒ A, c.π2 ⇒ B ⊢ P :: δ

Γ, c ⇒ A⊗B ⊢ read c ((_,_) ⇒ P) :: δ
⊗L

· ⊢ write c () :: c ⇐ 1
1X

Γ ⊢ P :: δ

Γ, c ⇒ 1 ⊢ read c (() ⇒ P) :: δ
1L

(k ∈ L)

a.k ⇐ Ak ⊢ write c k(_) :: c ⇐ ⊕{ℓ : Aℓ}ℓ∈L
⊕X

(Γ, c.ℓ ⇒ Aℓ ⊢ Pℓ :: δ) (∀ℓ ∈ L)

Γ, c ⇒ ⊕{ℓ : Aℓ}ℓ∈L ⊢ read c {ℓ(_) ⇒ Pℓ}ℓ∈L :: δ
⊕L

Figure 2: Typing Rules for Snax

References

Henry DeYoung and Frank Pfenning. Data layout from a type-theoretic perspective. In 38th Con-
ference on the Mathematical Foundations of Programming Semantics (MFPS 2022). Electronic Notes
in Theoretical Informatics and Computer Science 1, 2022. URL https://arxiv.org/abs/
2212.06321v6. Invited paper. Extended version available at https://arxiv.org/abs/
2212.06321v3.pdf.

Henry DeYoung, Frank Pfenning, and Klaas Pruiksma. Semi-axiomatic sequent calculus. In Z. Ar-
iola, editor, 5th International Conference on Formal Structures for Computation and Deduction (FSCD
2020), pages 29:1–29:22, Paris, France, June 2020. LIPIcs 167.

Michael Dummett. The Logical Basis of Metaphysics. Harvard University Press, Cambridge, Mas-
sachusetts, 1991. The William James Lectures, 1976.

LECTURE NOTES MARCH 13, 2025

https://arxiv.org/abs/2212.06321v6
https://arxiv.org/abs/2212.06321v6
https://arxiv.org/abs/2212.06321v3.pdf
https://arxiv.org/abs/2212.06321v3.pdf

Data Layout L15.11

Jana Dunfield and Neel Krishnaswami. Bidirectional typing. ACM Computing Surveys, 54(5):98:1–
98:38, 2022.

Gerhard Gentzen. Untersuchungen über das logische Schließen. Mathematische Zeitschrift, 39:176–
210, 405–431, 1935. English translation in M. E. Szabo, editor, The Collected Papers of Gerhard
Gentzen, pages 68–131, North-Holland, 1969.

Per Martin-Löf. On the meanings of the logical constants and the justifications of the logical
laws. Notes for three lectures given in Siena, Italy. Published in Nordic Journal of Philosophi-
cal Logic, 1(1):11-60, 1996, April 1983. URL http://www.hf.uio.no/ifikk/forskning/
publikasjoner/tidsskrifter/njpl/vol1no1/meaning.pdf.

Greg Morrisett. Compiling with Types. PhD thesis, Carnegie Mellon University, December 1995.
Available as Technical Report CMU-CS-95-226.

Dag Prawitz. Natural Deduction. Almquist & Wiksell, Stockholm, 1965.

Siva Somayyajula and Frank Pfenning. Dependent type refinements for futures. In M. Kerjean
and P. Levy, editors, 39th International Conference on Mathematical Foundations of Programming
Semantics (MFPS 2023), Bloomington, Indiana, USA, June 2023. Preliminary version.

Siva Kamesh Somayyajula. Total Correctness Type Refinements for Communicating Processes. Ph.D.
thesis, Carnegie Mellon University, May 2024. Available as Technical Report CMU-CS-24-108.

LECTURE NOTES MARCH 13, 2025

http://www.hf.uio.no/ifikk/forskning/publikasjoner/tidsskrifter/njpl/vol1no1/meaning.pdf
http://www.hf.uio.no/ifikk/forskning/publikasjoner/tidsskrifter/njpl/vol1no1/meaning.pdf

	Introduction
	Bidirectional Typechecking, More Abstractly
	Bidirectional Typing for Sax
	Summary of Bidirectional Rules for Sax, Positive Types
	Data Layout Using Subformulas
	Recursive Types
	Translations and Justifications
	Summary

