Lecture Notes on
Adjoint Sax

15-417/817: HOT Compilation
Frank Pfenning

Lecture 14
March 11, 2025

1 Introduction

The target of compilation from adjoint ND will be adjoint Sax. It turns out that adjoint Sax is
actually quite a bit simpler than adjoint ND for two reasons: (1) because of the symmetries be-
tween positive and negative types afforded by Sax we need fewer new constructs, and (2) any
kind of overloading of definitions with multiple types or modes are resolved during compilation
so that Sax (as a lower-level language) can be monomorphic. Also, we can reuse the definitions of
operations such as merge and least upper bound from Lecture 10 without change.

2 The Usual Connectives

We show the usual rules without taking into account subtyping.
y:An el
FFidey:(z:An) / (y: An)

id

F'FPu(x:An) /21 (m>r) Tha:AnFQ:(d:D,)/ Es
FFcut(z:Ap) PQ:(d:Dy)/Z1; (B2 \)

cut

In the cut rule we are reminded that in Sax, too, the independence principle should hold. That is,
inl'+ P::(d: D,) /= thenT is the lexical context and = are the variables used in P where = > r
must be respected. In the cut rule, we know from the first premise that =; > m, and also from the
middle condition that m > r, and from the last premise that =, > r. So =; ; 23 > r as required.

Pairs A,, ® B,,.
a:A,el',b: B, el
I' - write ¢ (a,b) = (c: Ay @ By) / (a: Ap) ;5 (b: By)

®X

c:Ap @By el (im>r) To:An,y:BybFP:(d:D,) /=
®L
I'Freadc ((z,y) = P) = (d:Dy) / (E\ zm \ ym); (c: Ap ® Bp,)

Here, in the axioms it is important to join (a : A,,) and (b : By,) because if mode m admits
contraction than a and b could be the same. Also, in the ® L rule we need to check that m > r

LECTURE NOTES MARCH 11, 2025

http://www.cs.cmu.edu/~fp/courses/15417-s25//lectures/10-adjoint.pdf

Adjoint Sax L14.2

to ensure the resulting output context is also above 7. Recall that the context removal operation
requires the mode of the variables because if m allows weakening it need not be present in =.
Functions A,,, — B,,.
Dz:ApbEP:i(y:Bn) /2
I'Fwritec ((z,y) = P) = (c: A = Bn) / (E\ o)

—R

a:An,el,c: A, —B,el
I'+read c(a,b):: (b: By) /(a: Ap); (¢: Ay — Bn)

—L

Independence doesn’t require any additional checks. But we need to be careful to use join in the
output of —L because with our equirecursive types, a and c could actually be the same address.
Unit 1.
c:lp,el’ (m>r) 'EP:u(d,:Dy)/E
1X
I'Ewritec () (c: 1)/ (9) I'Freadc(()=P):(dr:Dy) /E;(c: 1)

1L

Sums @{¢ : A’ ;. For the sum type we need the least-upper-bound operation on output
contexts. This is well-defined because there must be at least one branch because sums must be
nonempty.

a:AfneI‘

oX
I' - write c k(a) :: @{¢: AL }ocr, / (a: AF)

c:@{l: A Yye €T m>r (Tyat: AL FPl:(d:D,)/EY (Vel)
I'+read ¢ {{(z%) = PYer = (d: Dy) [Upe, GO\ 25,) s (e @{€: A% Yer)

oL

Lazy Records &{¢ : A’ },cr. As for the other dual connectives, we uses the syntax for sums, but
we swap the read and write operations.

(TFP (2t A) /)2 (Wel)
&R
'+ write ¢ {€(z) = P}y it (¢ &40 Al Yeer) / Uper, E°

c:&{0: Al Yyep €T
I'Fread ck(a): (a: AF) / (c: &{l: AL }ier)

&X

3 The Shift Connectives

We fully expect there to be a single new syntax that unifies the upshift and downshift at the level of
programs since they are dual to each other. This is indeed the case. As for the others, the notation
arises from the positive connective and the dual negative one borrows it.

LECTURE NOTES MARCH 11, 2025

Adjoint Sax L14.3

Downshift |* A;. Because the downshift is positive, the right rule becomes and axiom, while
the left rules remains essentially intact.

a:Apel
I Fwrite c (a) = (c: 18 A) / (a: Ap)

X

c:lkA el (m>r) T,x:Ay-P:(d:D,)/ZE
Pkreadc ((z) = P)::(d: D)/ (E\ z); (c: 1 Ap)

1L

In |L, we know by invariant on the premise that = > r. The condition m > r is needed so that
((E\ z1); (c : 18 Ap)) > r. By presupposition we also know that k& > m and therefore k > r,
although it is not entirely clear why we might need that for this rule.

Upshift 17" A,,.
F'EP:(x:A,) /2 (E>m) ‘R
I'Fwritec ((x) = P):: (c: 1 Ay) / E
c: A, el rx

I'treadc(a):(a: Ay) [/ (c:TAy)

Keeping in mind the presupposition that m > n when we write 17'A,,, we see that TR perhaps
surprisingly requires a condition while 1.X requires none.

4 Call

As usual, we think of top-level functions as metavariables that abstract over a whole context. We
assume all definitions p (x : A,,) [A] = P are collected in a global signature and we check each
such definition independently. Here, x : A,, is the destination of P.

(A>A,) AFP:(z:4,) /2 E\A=F
p(z: Ap) [A] = P valid

Technically, the condition A > A,, could we weakened to = > m, but it seems strange to parame-
terize a metavariable by variables that cannot be used in their definition.
When using metavariables, we supply a substitution p for its parameters.

p(r:An)[A]=P Tkp:A/E
Fkcallpp]::(a:An) /2

call

F'kpaA/Q b:Bpel
INOEAONAQ I'E(p,y =)= (Ayy: By) [Q5 (b: Bm)

5 Subtyping
The rules for subtyping are extended in the expected covariant form to encompass the shifts,

where the bounds have to match exactly. We only compare A,, < B,,, never two types of different
modes.

LECTURE NOTES MARCH 11, 2025

Adjoint Sax L14.4

Subtyping applies in a number of rules of Sax: essentially whenever a type appears more than
once. For example, the rule

a:A,cl'b: B, el
I' - write ¢ (a,b) :: (c: Ay, ® By) / (a: Ap) 5 (b: Bp)

®X

is modified to
a: A, elb:B, el A <A, B,,<Bp,
'k write ¢ (a,b) :: (¢: Ay ® By,) / (a: Al); (b: Bl,)

®X
Similarly, to account for width subtyping, some fields of lazy records or branches of continuations
may be dropped. For example:
(KDL) (THPw(2f:AL) /2 (Vel)
&
'+ write ¢ {(z*) = P}k = (c: &{0: AL Yer) / Lier Ze

As we will see in a future lecture, there are formulations of bidirectional typing for Sax which
eliminates some of these subtype checks.

LECTURE NOTES MARCH 11, 2025

	Introduction
	The Usual Connectives
	The Shift Connectives
	Call
	Subtyping

