
Lecture Notes on
Ordered Type Checking

15-417/817: HOT Compilation
Frank Pfenning

Lecture 13
February 27, 2025

1 Introduction

In the last two lectures we introduced ordered types and derived some consequences of para-
metricity for ordered types. The latter used a logical predicate indexed by a monoid, and also
showed how to modify it for linear types, which requires a commutative monoid.

We did not yet discuss how to perform type checking for the ordered case. So far it has been
perfectly okay (and, in fact, led to simpler code) to keep the context in order even though the
type system itself was linear or adjoint. Strangely, when we actually order the context that is no
longer possible (or at least I don’t know how to . . .). In today’s lecture we explain why and also
propose an algorithm which, as of this writing, we haven’t proved complete. It reuses the idea of
the monoid from the last lecture for purposes of type checking.

2 The Difficulty

A natural attempt is to apply the additive approach. The subtractive approach has its own com-
plications [Polakow, 2000, 2001]. The main judgment then is Γ ⊢ e ⇐⇒ A / Ω with the intent that
the output context Ω contains all variables used in their proper order. That is: Ω ⊢ e ⇐⇒ A.

We start with pairs, for which matters still go relatively well.

Γ ⊢ e1 ⇐= A / ΩA Γ ⊢ e2 ⇐= B / ΩB

Γ ⊢ (e1, e2) ⇐= A •B / ΩAΩB

•I

Here, context concatenation has to make sure that there are no duplicate variable declarations in
ΩA and ΩB .

The elimination rule is a bit trickier. After synthesizing a type A•B for e, we do not know how
to insert x and y in the correct place in Γ. There may be many variables in Γ that are not used, and
it could even be that e does not use any variables at all (for example, it might use a metavariable).
So we keep the lexical input context Γ unordered and add x and y to it.

Γ ⊢ e =⇒ A •B / ΩAB Γ, x : A, y : B ⊢ e′ ⇐= C / Ω′

Γ ⊢ match e ((x, y) ⇒ e′) ⇐= C / ?
•E?

LECTURE NOTES FEBRUARY 27, 2025

Ordered Type Checking L13.2

What does Ω′ have to look like? It should be of the form ΩL (x : A) (y : B) ΩR. Since ordered
variables are also linear, the occurrences of x and y must be unique, and we can split Ω′ and then
insert ΩAB in the middle.

Γ ⊢ e =⇒ A •B / ΩAB Γ, x : A, y : B ⊢ e′ ⇐= C / Ω′ Ω′ = ΩL (x : A) (y : B) ΩR

Γ ⊢ match e ((x, y) ⇒ e′) ⇐= C / ΩLΩAB ΩR

•E

If Ω′ cannot be split in this way then type-checking has to fail.
Unfortunately, the usually harmless unit 1 throws a wrench into the works. The introduction

rule is fine.

Γ ⊢ () ⇐= 1 / (·)
1I

Let’s propose the elimination rule as for pairs.

Γ ⊢ e =⇒ 1 / Ω1 Γ ⊢ e′ ⇐= C / Ω′ Ω′ = ΩLΩR

Γ ⊢ match e (() ⇒ e′) ⇐= C / ΩLΩ1ΩR

1E?

The problem here is that we do not have variables x and y to serve as guides where to split Ω′. In
other words, this rule is nondeterministic.

The problem with nondeterministic rules is that in an implementation one might need to back-
track over the choices. In a backtracking type-checker it is generally quite difficult to give good
error messages when type-checking fails because we may have many branches, all of which fail
and a particular source of the error is difficult to identify.

Often, in lieu of backtracking (when this is even possible) we can collect constraints and try to
solve them. This is where the monoid structure from the last lecture [Aberlé et al., 2025] comes to
the rescue. It is also a reinstantiation of the idea of a constructive resource semantics [Reed and
Pfenning, 2010].

3 Resource Tracking

One way to think about a resource semantics is by eliminating the restriction in the structural rules
and use algebraic reasoning instead. We would rewrite (first in logical form)

A1 . . . An ⊢ C as A1[α1], . . . , An[αn] ⊢ C[α1 · · ·αn]

where αi are taken from a resource algebra, and α1 · · ·αn is an term in the resource algebra. It
means that C must be proved using exactly the resources α1 · · ·αn, where each of the hypotheses
is labeled with a resource. This would allow us to restore weakening, because

B[β], A1[α1], . . . , An[αn] ⊢ C[α1 · · ·αn]

the hypothesis B[β] could simply not be used. Even contraction may be possible, because in

A[α], A[α] ⊢ C[α]

We could use the first or second copy of A to prove C, but not both because α · α ̸= α.

LECTURE NOTES FEBRUARY 27, 2025

Ordered Type Checking L13.3

We show what a few rules might look like, although there are certainly some options.

x : A[p] ∈ Γ

Γ ⊢ x =⇒ A[p]
var

Γ ⊢ e1 ⇐= A[p] Γ ⊢ e2 ⇐= B[q]

Γ ⊢ (e1, e2) ⇐= A •B[p · q]
•I

Γ ⊢ e =⇒ A •B[p] Γ, x : A[α], y : B[β] ⊢ e′ ⇐= C[q1 · α · β · q2]

Γ ⊢ match e ((x, y) ⇒ e′) ⇐= C[q1 · p · q2]
•Eα,β

In the •Eα,β rule, the parameters α and β must be chosen fresh and distinct. We can see the
relationship to the formulation with ordered output context because from

Γ ⊢ e ⇐⇒ C[p]

we can construct Ω from Γ and p so that

Γ ⊢ e ⇐⇒ C / Ω

The more creative we become with the resources, the more difficult it is to establish this relation-
ship.

Forgetting about resources for the moment, the bidirectional typing derivation of an expression
is determined by its shape because the rules are syntax-directed. The validity of typing for an ordered
derivation then reduces to the problem of checking equations between resources. In the case of
ordered types, these are equations in a monoid where the αi are parameters, that is, they act like
constants. Or one can think of them as being universally quantified. The laws here are just

p · (q · r) = (p · q) · r
p · ϵ = p
ϵ · q = q

where ϵ as the unit of the monoid represents the empty resource. If we are working in linear logic,
we have to add commutativity to the equations, but otherwise the same construction applies.

How does this help? The idea is that we can also introduce existentially quantified variables ω.
Instead of just solving ground equations, we now have to find valid instances. For example:

Γ ⊢ () ⇐= 1[ϵ]
1I

Γ ⊢ e =⇒ A •B[p] Γ ⊢ e′ ⇐= C[q] ∃ωL, ωR. q = ωL · ωR

Γ ⊢ match e (() ⇒ e′) ⇐= C[ωL · p · ωR]
1E

It is now a straightforward matter to rewrite the remaining bidirectional rules for ordered types.
We can then collect all the equations and try to solve them. We show a few more.

x : A[p] ∈ Γ

Γ ⊢ x =⇒ A[p]
var

Γ, x : A[α] ⊢ e ⇐= B[p] ∃ω. p = ω · α

Γ ⊢ λx. e ⇐= A ↠ B[ω]
↠Iα

Γ ⊢ e1 =⇒ A ↠ B[p] Γ ⊢ e2 ⇐= A[q]

Γ ⊢ e1 e2 =⇒ B[p · q]
↠E

LECTURE NOTES FEBRUARY 27, 2025

Ordered Type Checking L13.4

In the rule ↠I there is a check that is swept under the rug: we need to know that α is fresh, that
is, α does not occur in ω (after a solution for ω has been found). In the implementation we do not
explicitly check this, because we make a first pass with the previously described type-checking
algorithm that guarantees that the term is linearly well-typed. This is only possible if α ̸∈ ω, so this
test is omitted here. A better description would quantify over α, as in ∃ω.∀α. p = ω · α. But this
would complicate the constraint simplification algorithm described in the next section.

4 Constraint Solving

We have implemented a simple constraint solving algorithm that assumes that the expression has
already been linearly type-checked before. We do not know whether this algorithm is either sound
or complete. Overall, the set of equations is a conjunction of equations p = q, for monoid terms p
and q containing parameters α and variables ω.

Substitution. A constraint ω = p ∧ E where ω ̸∈ p is rewritten as [p/ω]E. This reduces the
number of variables.

Reflexivity. A constraint p = p ∧ E is rewritten as E. This reduces the number of equations.

Splitting. A constraint p1 · α · p2 = q1 · α · q2 ∧ E is rewritten as p1 = q1 ∧ p2 = q2 ∧ E. This
reduces the number of parameters α occurring in the equations. We can also say that we replace
one equation by two smaller ones.

Emptiness. A constraint ϵ = p ·q∧E is simplified to ϵ = p∧ ϵ = q∧E. This replaces one equation
by two smaller equations.

These are applied in the given order (although we don’t know whether this is significant).
Also, splitting is applied nondeterministically, that is, there may be multiple candidates and one
is picked arbitrarily.

Equations such as ϵ = α · p or ϵ = p · α or α · p = β · q or p · α = q · β for α ̸= β have no
solution due to the implicit universal quantification over the parameters α and β and are marked
as inconsistent.

It is conceivable that we end up with an equation such as ω1 · ω2 = ω3 · ω4 which has solutions
but cannot be simplified to the empty constraint. We currently just report an indefinite constraint
(type-checking neither succeeds nor fails), but we haven’t encountered one in our examples.

References

C. B. Aberlé, Chris Martens, and Frank Pfenning. Substructural parametricity. Submitted, Febru-
ary 2025. URL http://www.cs.cmu.edu/˜fp/papers/ordered25.pdf.

Jeff Polakow. Linear logic programming with an ordered context. In M. Gabbrielli and F. Pfenning,
editors, Conference on Principles and Practice of Declarative Programming (PPDP 2000), pages 68–79,
Montreal, Canada, September 2000. ACM.

Jeff Polakow. Ordered Linear Logic and Applications. PhD thesis, Department of Computer Science,
Carnegie Mellon University, August 2001.

LECTURE NOTES FEBRUARY 27, 2025

http://www.cs.cmu.edu/~fp/papers/ordered25.pdf

Ordered Type Checking L13.5

Jason C. Reed and Frank Pfenning. Focus-preserving embeddings of substructural logics in in-
tuitionistic logic. Unpublished Manuscript, January 2010. URL http://www.cs.cmu.edu/

˜fp/papers/substruct10.pdf.

LECTURE NOTES FEBRUARY 27, 2025

http://www.cs.cmu.edu/~fp/papers/substruct10.pdf
http://www.cs.cmu.edu/~fp/papers/substruct10.pdf

	Introduction
	The Difficulty
	Resource Tracking
	Constraint Solving

