Lecture Notes on
Law and Order

15-417/817: HOT Compilation
Frank Pfenning

Lecture 11
February 20, 2025

1 Introduction

So far, we have implicitly assumed that the order of the hypotheses in the context does not matter.
From the logical perspective, this means we alway assume the rule of exchange:

I',B,A Ty -C
', A BTIxy-C

exchange

What does rejecting this structural property mean from the programming language perspective?
Somehow it seems to say that we must use the assumptions “in order”, but actually that’s not
quite the case. Petersen et al. [2003] pursued the notion that order may be related to data layout.
And while this proved to be the case to some extent, it didn’t scale very well beyond the specific
technical realization in that paper. We’ll hint at later in the lecture why it didn’t extend.

Once one gets over this particular interpretation, though, it seems at first that ordered logic
(and the corresponding ordered types) are mostly useful for modeling. For example, the words in
a sentence are ordered, so it makes sense that a logical approach to grammars and parsing may
use an ordered logic. This was the origin of ordered logic in the form of the Lambek Calculus [Lam-
bek, 1958], a remarkably prescient paper that has stood the test of time. Generalized, there are
multiple applications in logical frameworks [Polakow and Pfenning, 1998, 1999, 2000, Polakow,
2000, Polakow and Yi, 2000, Polakow, 2001] and modeling of other systems such as Turing ma-
chines [Pfenning, 2023].

But what about functional programming? Perhaps somewhat surprisingly, there are interest-
ing functions that have strong ordered properties. Consider list append or reverse, tree traversals,
mapping or folding over a list, etc. And not only can we program them using ordered types, but
in conjunction with parametric polymorphism, their behavior can be fully characterized by their
types. We will explore the latter in the next lecture. In this one, we will introduce the ordered type
system and write some well-ordered functions.

2 An Ordered Type System

This and the next lecture will follow Aberlé et al. [2025], with some suitable adjustments for the
context of this course. One imagines to start with

QFe: A

LECTURE NOTES FEBRUARY 20, 2025

Law and Order L11.2

where (2 is an ordered context. But what principles should one apply to sanity-check the rules?
One is clearly preservation: If - e : Aand e < v then v : A. Another is progress, but we do not
have a small-step semantics so progress cannot be directly formulated. Preservation ultimately
relies on the substitution property:

IfQFe: Aand Qp (x: A)Qr b€ : Cthen Qp QQr F [e/z]e : C.

One might suspect that we could leave 7, or 2r empty, but then the substitution property will
fail because function types add further variables to the right or left and we still have to be able to
substitute into the expression. In the sequent calculus, a corresponding test would be cut elimina-
tion [Kanovich et al., 2018].

Because the context is ordered, there are in fact two forms of implication: one adding a variable
on the right (written A — B), and one adding a variable on the left (written A — B). Lambek’s
original notation B / A (B over A) for right implication and A \ B (A under B) for left implication
works well in the sequent calculus and modeling, but turns out to be often counterintuitive for
functional programming.

In this lecture we do not care about bidirectional checking, so we just write ordinary typing
rules. Because we want to write the usual functional programs, just classify them with precise
ordere types, we use the same syntax for pairs, functions, unit, etc. as we have done so far for the
linear and adjoint case.

Variables. That’s not controversial, because with a single variable there is no order to check.
———— var
r:AFxz: A

Ordered Pairs Ae B. For the introduction rule, we have to split the context somewhere, but keep
each side in order. For a context of n variables, there are n + 1 ways to apply this rules bottom-up.

Qake:A Qphtes: B
QaQpt (e1,e2): Ae B

o/

In the elimination rule, the pair must be taken from somewhere in the middle of the context. Trying
to force it to be at one end or the other means that the substitution property fails. Consequently,
it is not straightforward to think of the context as a queue or a stack: we can always “access” it at
any point.

QuaphFe:AeB Qp(z:A)(y:B)Qrte:C
QpQapQrt matche ((z,y) =¢€):C

Note that z and y are inserted in the context where) was.
We can already try to convince ourselves that A e B is non-commutative. The best approach
for a formal proof would be a cut-free sequent calculus.

of/

p:AeBF7:BeA

We cannot apply eI, because p would only be available for either B or A, but not both. So we can
apply oF, and in the first premise only the variable rule is promising.

var :
p:AeBFp:AeB (x:A)(y:B)F7:Be A

p: AeBFmatchp ((z,y) = 7): Be A

of/

LECTURE NOTES FEBRUARY 20, 2025

Law and Order L11.3

But now applying e R does not work, because we need to split the context (x : A) (y : B) moving
the left part to prove B and the right part to prove A.

Left and right functions. The introductions add the new variables either to the right end or the
left end of the context. There is no need to introduce any new expression, though, since ultimately
they both are functions.

Q(z:A)Fe:B (x:A)QFe:B
—1
QF Az.e: A— B QF \z.e: A—B

1

We could also try to have a kind of function that inserts x arbitrarily somewhere in the middle of
the context, but that would fail out substitution test (or cut elimination in a sequent calculus).
Like A o B, the elimination rules split the the context when read bottom up, but at fixed place.
Read top-down, they concatenate the contexts. We just need to make sure we have the correct
form of concatenation for each form of function.
QaptFe:A—>B QuFe: A QapFer:A— B Qale: A

-5 —E

QABQAI—eleQ:B QAQABI—eleQ:B

Because the variable « in A — B is added on the right side of the context, that’s where the argu-
ment in a function application need to be checked. The reverse is true for A — B.

Twist. We see that the left function A — B crosses the two parts of the context when compared to
the order of the subexpression e; and e;. This suggests there may be another form of conjunction
Ao B (read: A twist B) that behaves similarly. Indeed:

QalFe A Qples:B , QuphFe:AoB Qp(y:B)(z:A)Qrte:C
QpQatF (e1,e2): Ao B ° QL QapQrF matche ((z,y) =¢):C

oF

Note that x and y are added to the context in reverse order, to mirror the fact that the contexts in
the introduction form are crossed.

3 Some Examples

We consider the function to curry a function from pairs,
g:(AeB) - CkAx.\y.g(z,y): A— (B —C)
It may be useful to write out the typing derivation, we just note that after two steps we are at
(9:(AeB) > C)(x:A)(y:B)Fyg(z,y):C

Now the typing succeeds because = and y are to the right of g and in the correct order. Note that
both implication A — (B — C) need to be right implications.
Perhaps surprisingly, we can give exactly the exact function another type!

g:(AoB)— CkFAx. \y.g(x,y): A— (B— C)
After two steps we arrive at

(y:B)(z:A)(g: (AoB) —C)Fg(x,y): C

LECTURE NOTES FEBRUARY 20, 2025

Law and Order L11.4

We see that y and x are on the correct side of g, and in the correct (twisted) order.
We can uncurry as well.

f:A—>»(B—C)F Ap.matchp ((z,y) = fzy): (AeB) -» C
After two steps we arrive at
(f: A= (B—C))(w:A)(y: B)F fay:C
We see that « and y are to the right of f and in the correct order. Again, we can dualize this to
f:A— (B—C)FAp.matchp ((z,y) = fzy): (Ao B) — C
After two steps, we arrive at
(y:B)(@: A)(f:A— (B—C)F fay:C

where, again, y and x are on the correct side of f, in the correct order.

In the research compiler, we currently don’t have polymorphism so we need to fake this using
type definition that are not related by subtypes. The order feature is experimental, and checking
proceeds by first checking linearity for ordered modes, and then order when an instance declara-
tion inst with an ordered mode is given. We use the following concrete syntax:

AeB A % B
AoB A @B
A—-B A -> B
A—B A\ B

This means that the right implication and fuse are consistent with linear functions and pairs, read-
ing them left to right.

As explained in the last lecture, we separate declarations from definitions, so we can give the
same definition multiple different types.

mode U structural :> O
mode O ordered

(+ fake polymorphism x)

type A[m] = +{'a : 1}

type B[m] = +{’b : 1}

type C[m] = +{’'c : 1}

decl fuse (x : A[m]) (y : B[m]) : A[m] = B[m]

decl fuse (x : A[m]) (y : B[m]) : A[m] @ B[m]

defn fuse x vy = (x, Vy)

inst fuse (x : A[O]) (y : B[O]) : A[O] % B[O]

fail

inst fuse (x : A[O]) (y : B[O]) : A[O] @ B[O]

decl uncurry (f : A[m] -> B[m] -> C[m]) : (A[m] = B[m] -> C[m])
decl uncurry (f : A[m] \ B[m] \ C[m]) : (A[m] @ B[m] \ C[m])
defn uncurry f = fun p => match p with | (x, y) => f x vy

LECTURE NOTES FEBRUARY 20, 2025

Law and Order L11.5

inst uncurry (f : A[O] -> B[O] -> C[O]) : (A[O] * B[O] —-> CI[O])
inst uncurry (f : A[O] \ B[O] \ C[O]) (A[O] @ B[O] \ C[0O])

decl curry (g : A[m] = B[m] -> C[m]) : A[m] -> B[m] -> C[m]
decl curry (g : A[m] @ B[m] \ C[m]) : A[m] \ B[m] \ C[m]
defn curry g = fun x => fun y => g (x, V)

inst curry (g : A[O] * B[O] -> C[O]) : A[O] —-> B[O] —-> C[O]
inst curry (g : A[O] @ B[O] \ C[O]) : A[O] \ B[O] \ C[O]

In general we can swap left and right arrows together with fuse and twist and preserve typability,
as long as we also swap the arguments of top-level definitions if there is more than one. They are
typed with in order:

OkFe: A FQp|:A=e QFo:Qp
defn call
F[Q]: A= ewvalid QF Flo]: A

Qrbo:Q Qprbe:A
QrLOpkE (o,x—e): (Qua:A) E() ()

That is, the arguments are seen as constituting an ordered context, so as in the example of the fuse
function above, their order is relevant.

4 Additional Connectives

Unit, sums and lazy records are somewhat boring. Because type definitions are equirecursive, they
do not explicitly contribute to the rules. Even though order has to be respected, these connectives
do not split into two, the way that pairs and functions do.

Unit. It looks like nothing special, although as we see in Lecture 13, it actually is tricky for type-

checking purposes.

M kFe:1 Q. Qpke:C s
—_— 1
‘F():1 QL QrtFmatche (()=¢€):C

The reason this ends up being tricky is because there is no explicit marker in the Q;, Qp that helps
us decide where €27 should be inserted.

Sums. The requirements on the elimination rule are that all branches must use the same ordered
context. In that way;, it isn’t significantly different from the linear case.

QFe: Ag ; Q"GIEB{K:Ag}geL (QL(ﬂjg:Ag)QRl—eg:C) (VEEL) .
57 7]
QF k(e) : @{f : Ag}geL Qr QA Qg F match e {E(l‘g) = eE}EeL :C
Lazy Records.
(Ql—eg:Ag) (\V%EL) Ql—ei&{giAg}geL (k}GL)
&I &E
Q- {é = eg}geL : &{é : Ag}geL OFek: A,

LECTURE NOTES FEBRUARY 20, 2025

Law and Order L11.6

5 Additional Examples

For lists, we define two different types. An llist A is typed left-to-right, the way we generally think
about it being laid out. That is,

Qlkvle anvn:A
Q... Qp - cons(vy, ..., cons(vy,nil ())) : llist A

We can define this type as
type llist[m] = +{’'nil : 1, "cons : <A[m]> % <1llist[m]>}

where we do not distinguish the mode of the elements from the mode of the list. Ignore the shifts
(—) and remember that o » B stands for A e B.
With this type we can define the ordered append function.

decl append (11 : 1list[m]) (12 : 1list[m]) : 1llist[m]

defn append 11 12 = match 11 with

| "nil () => 12
| 'cons (<x>, <xs>) => 'cons(<x>, <append xs 12>)
inst append (11 : 11list[O]) (12 : 11list[O]) : 1list[O]

A remarkable fact, explained in the next lecture, is that up to extensional equality the append
function is the only one inhabiting the given polymorphic type!
An rlist has the same values, but is typed in reverse.

in_’l)n:A Qll_’ljliA
Q... Q- cons(vy, ..., cons(vy,nil ())) : rlist A

This type can be defined as
type rlist[m] = +{’'nil : 1, 'cons : <A[m]> @ <rlist[m]>}
Recall that A @ B stands for A o B.
With this, we can define the ordered reverse function. Here we need to list the accumulator
argument [y before the input list /;. We have indicated the typing context and result type as a

comment in the cons branch of the pattern match. Because the pair in an rlist is typed with a twist,
l2 and x must be in reverse order and before zs in order to type the recursive call.

decl reverse (12 : rlist[m]) (11 : 1llist[m]) : rlist[m]

defn reverse 12 11 = match 11 with

| "nil () => 12

| ’cons (<x>, <xs>) => (# (12 : rlist A) (x : A) (xs : 1list A) |- rlist A %)
reverse (’cons(<x>, <12>)) xs

inst reverse (12 : rlist[O]) (11 : 1list[O]) : rlist[O]

inst reverse (12 : rlist[U]) (11 : 1llist[U]) : rlist|[U]

Again, somewhat remarkably, modulo extensional equality (and there are many ways to define
list reversal) the reverse function is the only one inhabiting the first of the two given instance type.
We also show the second, which means we can apply exactly the same function to unordered lists,
of course, with the same results.

LECTURE NOTES FEBRUARY 20, 2025

Law and Order L11.7

Remember that at the point of this writing, the polymorphism in the lists is only faked, but
since the functions do not analyze the structure of the list elements, the examples could be typed
polymorphically in a future extension.

At the moment, we do not know if order can be exploited inside a compiler for efficiency, per-
haps in a way that is analogous to the way the lack of contraction can be exploited for in-place
update. One point is that the elimination rules for positives replace the middle of the ordered con-
text with some number of new variables, and possibly none. As such, adjacency is not preserved
by ordered types, only the relative order of data in their layout. This is why I think the original
approach to data layout by Petersen et al. [2003] doesn’t scale well beyond a certain allocation
strategy.

References

C. B. Aberl¢, Chris Martens, and Frank Pfenning. Substructural parametricity. Submitted, Febru-
ary 2025. URL http://www.cs.cmu.edu/~fp/papers/ordered25.pdf.

Max Kanovich, Stepan Kuznetsov, Vivek Nigam, and Andre Scedrov. A logical framework with
commutative and non-commutative subexponentials. In International Joint Conference on Auto-
mated Reasoning (IJCAR 2018), pages 228-245. Springer LNAI 10900, 2018.

Joachim Lambek. The mathematics of sentence structure. The American Mathematical Monthly, 65
(3):154-170, 1958.

Leaf Petersen, Robert Harper, Karl Crary, and Frank Pfenning. A type theory for memory alloca-
tion and data layout. In G. Morrisett, editor, Conference Record of the 30th Annual Symposium on
Principles of Programming Languages (POPL03), pages 172-184, New Orleans, Louisiana, January
2003. ACM Press. Extended version available as Technical Report CMU-CS-02-171, December
2002.

Frank Pfenning. Substructural logics, Fall 2023. Course materials including lecture notes available
athttps://www.cs.cmu.edu/~fp/courses/15836-£23/.

Jeff Polakow. Linear logic programming with an ordered context. In M. Gabbrielli and F. Pfenning,
editors, Conference on Principles and Practice of Declarative Programming (PPDP 2000), pages 68-79,
Montreal, Canada, September 2000. ACM.

Jeff Polakow. Ordered Linear Logic and Applications. PhD thesis, Department of Computer Science,
Carnegie Mellon University, August 2001.

Jeff Polakow and Frank Pfenning. Ordered linear logic programming. Technical Report CMU-CS-
98-183, Department of Computer Science, Carnegie Mellon University, December 1998.

Jeff Polakow and Frank Pfenning. Natural deduction for intuitionistic non-commutative linear
logic. In J.-Y. Girard, editor, Proceedings of the 4th International Conference on Typed Lambda Calculi
and Applications (TLCA’99), pages 295-309, L'Aquila, Italy, April 1999. Springer-Verlag LNCS
1581.

Jeff Polakow and Frank Pfenning. Properties of terms in continuation-passing style in an or-
dered logical framework. In Joélle Despeyroux, editor, 2nd Workshop on Logical Frameworks and
Meta-languages (LFM’00), Santa Barbara, California, June 2000. Proceedings available as INRIA
Technical Report.

LECTURE NOTES FEBRUARY 20, 2025

http://www.cs.cmu.edu/~fp/papers/ordered25.pdf
https://www.cs.cmu.edu/~fp/courses/15836-f23/

Law and Order L11.8

Jeff Polakow and Kwangkeun Yi. Proving syntactic properties of exceptions in an ordered logical
framework. In Proceedings of the First Asian Workshop on Programming Languages and Systems
(APLAS’00), pages 23-32, December 2000.

LECTURE NOTES FEBRUARY 20, 2025

	Introduction
	An Ordered Type System
	Some Examples
	Additional Connectives
	Additional Examples

