Lecture Notes on
Closure Conversion

15-417/817: HOT Compilation
Frank Pfenning

Lecture 9
February 11, 2025

1 Introduction

In the previous lecture we introduced closures into the dynamics of ND and Sax. At a lower level,
we’d like a closure to consist of an environment and a code pointer. How do we get there? There
are two steps: the first step is to lift all closures to the top-level, in the form of metavariables similar
to those making up definitions. The second step is to build the tuples making up the environment
at runtime and store a pair with the address of the environment and the code pointer to memory.
In this lecture we will talk about the first step: lifting closures to the top level.

2 Lifting Negative Expressions

Let’s consider a simple definition.

type nat = +{’zero : 1, ’'succ : nat}

type list = +{’'nil : 1, ’cons : nat = list}
defn rev (1 : list) (acc : list) : list =
match 1 with

| "nil() => acc

| "cons(hd, tl) => rev tl (’'cons (hd, acc))
end

This is perfectly fine as a definition, and in ND probably the right one. But we could also just take
a list and return a function!

defn revfun (1 : list) : list -> list =

match 1 with

| 'nil() => fun acc => acc

| "cons(hd, tl) => fun acc => revfun tl (’cons (hd, acc))
end

We see that revfun contains two function constructors, one in each branch. The first one is closed,
the second one has free variables hd and t1. Closure conversion generates a new definition for
each. In general, every constructor for values of negative type should be lifted to the top level,
creating a new definition.

defn rev_ (1 : list) : list —> list =
match 1 with

LECTURE NOTES FEBRUARY 11, 2025

Closure Conversion L9.2

| "nil() => revfun2_ 1

| "cons(hd, tl) => revfun2_2 tl hd
end

defn rev_1 : list -> list =

fun acc => acc

defn rev_2 (tl : list) (hd : nat) : list -> list =
fun acc => rev_ tl ('cons (hd, acc))

After this transformation, all constructors for negative types are first in the definition of a metavari-
able.

A pleasant property of this transformation is that this revised program will execute exactly as
the original program using the dynamics defined in the last lecture. So we haven’t done much
except to lift all A\-abstractions to the top level.

A similar transformation applies to lazy records. Let’s consider a simple store interface from
Lecture 7.

type store = &{’ins : nat -> store,
"del : +{"none : 1, ’'some : nat * store}}

defn empty : store =

record

| "ins => fun x => elem x empty
| "del => "none/()

end

defn elem (x : nat) (s : store) : store =
record

| "ins => fun y => elem y (elem x s)

| "del => "some (x, s)

end

The empty and elem definitions are already of the correct form at the top level, since they start
with a record constructor. Embedded are two functions, so new definitions have to be created for
them.

defn empty_ : store =
record

| "ins => empty_1

| "del => "none/()

end

defn empty_1 : nat -> store =
fun x => elem_ x empty_

defn elem_ (x : nat) (s : store) : store =
record

| 7ins => elem_1 x s

| "del => "some (x, s)

end

defn elem_1 (x : nat) (s : store) : nat -> store =
fun y => elem_ y (elem_ x s)

LECTURE NOTES FEBRUARY 11, 2025

http://www.cs.cmu.edu/~fp/courses/15417-s25//lectures/07-negatives.pdf

Closure Conversion L9.3

3 A Type-Directed Transformation

When we lift a function or record constructor to the top level, as a meta-variable, we need to know
the free variables in an expression so we can parametrize the new definition by it. But this is
exactly what the output context = in

'Fe«=A/E

tracks: the variables used in e! So we should instrument these two judgments with a transformed
expression ¢’ in which negative constructors (fun, record) have been replaced by calls to new
metavariables. It’s quite tedious to write all this as an inference system, since besides the trans-
formed expression e we also need to collect the new top-level definitions. So we indicate the latter
part informally. The judgment then becomes

F'k(ewe)<=A/=

where ¢’ is the result of applying closure conversion to e.
First, the rules for positives are updated systematically, just rebuilding the expression after
translation.

17
()~ =1/

F"SWS/:>1/51 F|—6W€/<:C/E.2

1E
I' - match s with () = e ~ match ' with () = ¢ < C /Z1;5,

F|—€1W6/1<:A1/El 1—"—€2W6,2<:A2/EQ

®1
'k (er,e2) ~ (e],€5) <= A1 ® Ay [21 ;5

F"SWS/:>A1®A2/51 F,$1:A1,$2:A2|_€W€/<:C/EQ

QF
I' F match s with (21, 22) = e ~» match s’ with (z1,29) = € <= C / E1; ((E2 \ 71) \ 22)

(keL) Thewe <= A, /=
eI
TFk(e) ~ k()<= a{l: At}oer /| 2

Pks~s = ®{l: Al /| =1
(F,xg:AgFegW€2<:C/Eg E@\xg:Ez) (VKEL)

oE
I' - match s with {{(z/) = es}ser, ~» match s’ with {{(z)) = €} }icr, <= C / E1;

'Fewe =A /=2 A <A
var :>/<:
'Fe~o=A/2:A F'Fewe<«—=A/ZE

The first interesting rule concerns the function constructor.

MNz:Are<=DB/E
'FXz.e<=A—B/(E\x)

—T

We have to transform this into a top-level definition which is then used. Here, F[Z] : A — B =
Az. €' is the new definition added to the top-level signature. The substitution idz is the identity

LECTURE NOTES FEBRUARY 11, 2025

Closure Conversion 1L9.4

substitution on =, substituting each variable in = for itself.
I'Ne:AFe~we «—B/E E=EF\z F[E:A—B=X.€¢ F fresh
I'FAzr.e~ Flidg] <=A—B/EZ

—1

Notice how we exploit the fact that = contains exactly the variables that occur free in Ax.e. This
is actually independent from whether the variables are treated linearly or not, which means our
approach will easily scale to a nonlinear language.

Function application does not change: in e ez, e; will evaluate to a closure and application
proceeds as laid out in the last lecture.

F|—€1M->€/1:>A—>B/El F|_€2’\"‘>€/2<:A/52

—F
I'Fejex~ee, = B/ (E1;Es)

Lazy records do not introduce any new ideas. The change is again at the constructor, where a new
top-level definition is constructed.

e ~ey«=A/=Z) (VWel) F[E]:&{(:A}ver = {€ = €)}scr F fresh
PHA{l=es}per ~ Flids] <= &{l: As}per / E

&I

F|—6W€,:>&{£ZAE}gGL/E (kEL)
Ftek~ek= A, /E

&E

You should convince yourself that in these rules, neither the type of the expression nor the output
context = changes. This could be expressed as the following theorem, which follows by rule
induction over the given derivation.

IfT F e <= A/ E then there exists an ¢’ such thatT' e~ ¢ <= A /Eand T I ¢/ <=
A / 2. Moreover, modulo the names of new metavariables, €' is unique.

We can also show that e and ¢’ compute the same observable output, typically via a kind of bisim-
ulation argument between the traces.

4 Executing Programs After Closure Conversion

If we take a new definition F[=] : A— B = Az.e or F[Z] : &{{ : As}ser, then calling this definition
with a substitution o will immediately build a closure. That is

n - Flidz] < (n, Flidz])

This, however, might be considered a bit wasteful because 7 may have all variables lexically in
scope, while only the variables in id= matter. So we could rewrite this as

n - Flidz] = F(n|z)

where 7|z is the restriction of 7 to the variables in E.

This use of F' on the right-hand side looks to be related to contextual modal possibility [Nanevski
et al., 2008, Section 9.1], except that we would need to change application to “unwrap” the contex-
tual modality. This seems in line with the observation by Minamide et al. [1996] that full closure
conversion (including application) can be explained via existential types. However, their approach
does not a priori enforce that closures really are closed, only that they are existentially typed. Per-
haps a combination of the ideas could provide a more complete explanation for closures, but we
do not pursue this here.

LECTURE NOTES FEBRUARY 11, 2025

Closure Conversion L9.5

5 Closures in Sax

We have already seen environments and closures in Sax in the last lecture. The change to Sax is
analogous to the change in ND: negative storables (that is, continuations K) are restricted to be the
first constructs on right-hand sides of definitions. A further step would be to model computation
and storage at a lower level of abstraction, but we leave this to a future lecture or miniproject.

6 Optimizations

The most immediate optimization is to allow a top-level definition to start with a whole sequence
of constructors of negative type. This avoids the overhead of building intermediate closures for
every single constructor. At a call site for for a closure definition we would than have to select the
appropriate instance, expecting and processing multiple arguments. This allows the functional
idiom of “partial application”, eliminating much of the overhead for a full application.

Beyond that, control flow analysis for whole program optimization seems to be the most im-
portant optimization [Cejtin et al., 2000].

References

Henry Cejtin, Suresh Jagannathan, and Stephen Weeks. Flow-directed closure conversion for
typed languages. In Gert Smolka, editor, 9th European Symposium on Programming (ESOP 2000),
pages 5671, Berlin, Germany, March 2000. Springer LNCS 1782.

Yasuhiko Minamide, J. Gregory Morrisett, and Robert Harper. Typed closure conversion. In 23rd
Symposium on Principles of Programming Languages (POPL 1996), pages 271-283. ACM, January
1996.

Aleksandar Nanevski, Frank Pfenning, and Brigitte Pientka. Contextual modal type theory. Trans-
actions on Computational Logic, 9(3), 2008.

LECTURE NOTES FEBRUARY 11, 2025

	Introduction
	Lifting Negative Expressions
	A Type-Directed Transformation
	Executing Programs After Closure Conversion
	Closures in Sax
	Optimizations

