
Lecture Notes on
Optimizations

15-417/817: HOT Compilation
Frank Pfenning

Lecture 6
January 30, 2025

1 Introduction

One important aspect of compilation is optimization, which refers to rewriting programs in a
semantics-preserving manner so that they execute more efficiently. In Lecture 4 we have already
seen two: in Sax, a cut composed with the identity id as either subterm can be reduced by substi-
tution. While one would be unlikely to write such Sax programs by hand, a straightforward trans-
lation from ND will introduce such patterns. Rather then trying to complicate the translations, it
is generally a better idea keep translations simple, followed by equally simple transformations. In
fact, in the first version of my research compiler for ND I tried to avoid such patterns, leading to
unnecessarily complex code that, in the end, couldn’t avoid all instances of cut/id.

In today’s lecture we cover an optimization that fundamentally relies on linearity (or at least
the absence of contraction). The semantics expresses that once we have read a memory cell, we
can deallocate it because it can no longer be referenced in the running program. This, by itself,
isn’t an optimization, simply an aspect of the dynamics of Sax that isn’t visible in ND because
memory isn’t explicit. But instead of deallocating it we can look for opportunities to reuse it in
the same lexical context. If we do, the Sax code becomes even more imperative in flavor than it
already is. Algorithms mutate data in place instead of frequently allocating and freeing memory
as we are used to from functional programs.

For Sax and its variants, this has been investigated by Ng in his Honors Thesis [Ng, 2024], but it
is not the first time this idea has been pursued in several forms [Lorenzen et al., 2023, 2024]. There
is also a dynamic, opportunistic variant where memory is actually deallocated if a reference count
hits zero, but then picked up again by temporally (rather than lexically) close allocation [Reinking
et al., 2021] with a similar effect.

2 Vertical Reuse

There are some nontrivial interactions between parallelism and reuse, so we begin with a relatively
robust case: vertical reuse. We begin with an example.

1 type bin = +{’b0 : bin, ’b1 : bin, ’e : 1}
2

3 proc inc (d : bin) (x : bin) =
4 read x {
5 | ’b0(y) => write d ’b1(y)

LECTURE NOTES JANUARY 30, 2025

http://www.cs.cmu.edu/~fp/courses/15417-s25//lectures/04-compilation.pdf

Optimizations L6.2

6 | ’b1(y) => cut z : bin
7 call inc z y
8 write d ’b0(z)
9 | ’e(u) => cut z : bin

10 write z ’e(u)
11 write d ’b1(z)
12 }

There is no allocation in the first branch of the read, so let’s focus on the second branch. When
we encounter the cut, we have just read from the address x. This means the memory cell con-
taining the small value of x could be deallocated. Now we observe that, immediately, we are
allocating another cell for z of the same type. So instead of deallocating x and allocating a fresh z,
we can just reuse x! So the optimized code becomes:

1 proc inc (d : bin) (x : bin) =
2 read x {
3 | ’b0(y) => write d ’b1(y)
4 | ’b1(y) => reuse z = x : bin
5 call inc z y
6 write d ’b0(z)
7 | ’e(u) => cut z : bin
8 write z ’e(u)
9 write d ’b1(z)

10 }

Now let’s shift our attention to the third branch. Again, we are allocating a fresh z after just having
read x, so we can turn this into

1 proc inc (d : bin) (x : bin) =
2 read x {
3 | ’b0(y) => write d ’b1(y)
4 | ’b1(y) => reuse z = x : bin
5 call inc z y
6 write d ’b0(z)
7 | ’e(u) => reuse z = x : bin
8 write z ’e(u)
9 write d ’b1(z)

10 }

Perhaps surprisingly, this code does not perform any allocations at all! In other words, binary
increment works (almost) “in place”, except possibly for the top-level destination that might have
to be allocated before calling inc. We see that x is freed in the case of ’b0, so perhaps it is not
quite “in place” unless we could call it with the original source as a destination. That, however,
wouldn’t work in the other two branches.

The general principle at work is that if we read from an address a then in the scope of that read
the address a can be reused. In Sax’s somewhat unrealistic memory model, all data take the same
amount of space, so all reuse would be permitted. Slightly more robust would be to rule out ad-
dress of type 1, because the runtime system may want to avoid allocating and writing something
of that type. Even more robust would be to only reuse addresses at the same type. Because of the
way functional algorithms work on linear data, this is surprisingly frequently applicable.

In order to capture this formally, we modify the typing judgment and rules to track, throughout
its scope, whether a variable has been used. The additive type checking rules do not actually
accomplish that because we collect information when moving back up the abstract syntax tree
rather than when going down. For now we maintain the property that every variable lexically in

LECTURE NOTES JANUARY 30, 2025

Optimizations L6.3

scope appears in Γ, but we annotate each variable with 0 (not used yet) and 1 (used already). In
the latter case it may be reused.

Γ, x1 : 1 ⊢ P :: δ / Ξ

Γ, x0 : 1 ⊢ read x () ⇒ Q :: δ / Ξ ; (x : 1)
1L

Γ, z1 : A⊗B, x0 : A, y0 : B ⊢ Q :: δ / Ξ

Γ, z0 : A⊗B ⊢ read z (x, y) ⇒ Q :: δ / (Ξ \x \ y) ; z : A⊗B
⊗L

(Γ, x1 ⊕ {ℓ : Aℓ}ℓ∈L, y0ℓ : Aℓ ⊢ Qℓ :: δ / Ξℓ Ξ = Ξℓ \ yℓ) (∀ℓ ∈ L)

Γ, x0 : ⊕{ℓ : Aℓ}ℓ∈L ⊢ read x {ℓ(yℓ) ⇒ Qℓ}ℓ∈L :: δ / Ξ ; x : ⊕{ℓ : Aℓ}ℓ∈L
⊕L

The identity rule now requires that y has not been used yet.

Γ, y0 : A ⊢ id x y :: (x : A) / (y : A)
id

With the rules so far it should be clear that certain type errors may now be caught a bit earlier
in the term traversal of the typechecker, since we propagate some usage information down. The
version of cut that allocates remains intact, just notes the fresh variable hasn’t been used yet.

Γ ⊢ P :: (x : A) / Ξ1 Γ, x0 : A ⊢ Q :: δ / Ξ2

Γ ⊢ cut (x : A) P Q :: δ / Ξ1 ; (Ξ2 \x)
cut

Now the most interesting rule on reuse.

Γ ⊢ P :: (x : A) / Ξ1 Γ, x0 : A ⊢ Q :: δ / Ξ2

Γ, y1 : A ⊢ reuse x = y P Q :: δ / Ξ1 ; (Ξ2 \x)
cut

It is not clear what should happen to the hypothesis y1 : A. Leaving it as y1 : A would allow
another reuse, even though it is not available. Reverting it to y0 : A would suggest that it may be
used, which is also not correct because it has already been read. We decided simply to remove it,
even though it is still lexically in scope. Perhaps there are better solutions?

Do we also need to change the axioms? As for the identity rule, it is clearly possible to do so
by requiring that variables have not yet been used.

x0 : A ∈ Γ, y0 : B ∈ Γ

Γ ⊢ write z (x, y) :: z : A⊗B / (x : A) ; (y : B)
⊗X

Γ ⊢ write x () :: (x : 1) / (·)
1X

(k ∈ L) y0 : Ak ∈ Γ

Γ ⊢ write x k(y) :: (x : ⊕{ℓ : Aℓ}ℓ∈L) / (y : Ak)
⊕X

3 Another Example: List Reversal in Place for Free

Static reuse applies surprisingly frequently, giving us efficient implementations of algorithms from
pure functional program. Reversing a linear list is another example. Consider:

LECTURE NOTES JANUARY 30, 2025

Optimizations L6.4

1 type list = +{’nil : 1, ’cons : bin * list}
2

3 proc reverse (d : list) (xs : list) (acc : list) =
4 read xs {
5 | ’nil(u) => read u ()
6 id d acc
7 | ’cons(p) => read p (x, xs)
8 cut q : bin * list
9 write q (x, acc)

10 cut acc1 : list
11 write acc1 ’cons(q)
12 call reverse d xs acc1
13 }

Note that at the cut of q we have just read p of the same type, at the cut of acc1 we have read xs
earlier, again of the same type. So under our optimization, this code transforms to

1 type list = +{’nil : 1, ’cons : bin * list}
2

3 proc reverse (d : list) (xs : list) (acc : list) =
4 read xs {
5 | ’nil(u) => read u ()
6 id d acc
7 | ’cons(p) => read p (x, tl)
8 reuse q = p : bin * list
9 write q (x, acc)

10 reuse acc1 = xs : list
11 write acc1 ’cons(q)
12 call reverse d tl acc1
13 }

We see there is no actual allocation in this recursive functions, although a single new cell may
need to be allocated for the destination before the outermost call to reverse.

We may notice something else here, that’s not currently part of our research compiler. In the
second branch, we know that xs is a address paired with the tag ’cons. But then we unnecessarily
write the tag ’cons again. Similarly, the first component of the pair at address p is the address x,
but then we write x in the same place in line 9. Since writing to memory can be expensive, optimiz-
ing aways such unnecessary write operations may be noticeable in terms of overall performance
if it happens frequently.

4 Horizontal Reuse

The static reuse optimizations above propagate information about usage into the scope of read
operations. However, it is also possible that in a cut (x : A) P Q there is a variable used in P that
should then be available for reuse in Q. This can be tracked with a subtractive version of resource
management during typechecking [Cervesato et al., 2000].

This works fine in a sequential semantics but, as Ng [2024] points out, can lead to a classic
deadlock situation under a parallel semantics. The basic observation is that a reuse command
for y in Q may have to wait until P actually reads y. Reuse then becomes a possibly blocking
command.

We have not run any experiments to assess how much horizontal reuse adds to vertical reuse
over a representative set of programs. Both optimizations clearly rely on linearity, or at least on

LECTURE NOTES JANUARY 30, 2025

Optimizations L6.5

the type system to be affine so there is at most one reference to any cell.

References

Iliano Cervesato, Joshua S. Hodas, and Frank Pfenning. Efficient resource management for linear
logic proof search. Theoretical Computer Science, 232(1–2):133–163, February 2000. Special issue
on Proof Search in Type-Theoretic Languages, D. Galmiche and D. Pym, editors.

Anton Lorenzen, Daan Leijen, and Wouter Swierstra. FP2: Fully in-place functional programming.
In International Conference on Functional Programming (ICFP 2023), Proceedings on Programming
Languages, pages 275–304. ACM, August 2023.

Anton Lorenzen, Daan Leijen, Wouter Swierstra, and Sam Lindley. The functional essense of
imperative binary search trees. In Programming Language Design and Implementation (PLDI 2024),
volume 8 of Proceedings on Programming Languages, pages 518–542. ACM, January 2024.

Daniel Ng. Memory reuse in linear functional computation. Honors thesis, Carnegie Mellon
University, May 2024. URL http://www.cs.cmu.edu/˜fp/courses/15417-s25/misc/
Ng24.pdf.

Alex Reinking, Ningning Xie, Leonardo de Moura, and Daan Leijen. Perceus: Garbage free refer-
ence counting with reuse. In 42nd International Conference on Programming Language Design and
Implementation (PLDI 2021), pages 96–111. ACM, June 2021.

LECTURE NOTES JANUARY 30, 2025

http://www.cs.cmu.edu/~fp/courses/15417-s25/misc/Ng24.pdf
http://www.cs.cmu.edu/~fp/courses/15417-s25/misc/Ng24.pdf

	Introduction
	Vertical Reuse
	Another Example: List Reversal in Place for Free
	Horizontal Reuse

