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1 Introduction

Earlier, we had said that the Sax implementation produces a heap from which we have to read off
the large value, but we didn’t specify what these large values should be. Now that we have the
ND source language, we can plug this whole and specify the meaning of a source expression.

We use a high-level of specification, working directly with a big-step semantics that relates a
given expression with its final value. We’d also like to preserve nontermination, which in our
language just arises from the absence of a value for an expression. Correspondingly, the result of
compilation to Sax should have no final configuration.

In lecture, we also covered some aspects of nested pattern matching which is written up in
Lecture 4.

2 Semantic Rules

We only evaluate closed and well-typed expressions. Therefore, we don’t need any context and
define directly

e ↪→ V

This judgment satisfies preservation:

If · ⊢ e : A and e ↪→ V then V : A.

Also useful is that values are stable under evaluation:

V ↪→ V

The progress property is more difficult to express since it relates to the process of constructing
a derivation of e ↪→ V given e. This is a characteristic of natural semantics [Kahn, 1987]. The
alternative of structural operational semantics [Plotkin, 1981] has some advantages (such as an un-
derstanding of progress), but usually has less parallelism. The substructural operational semantics
[Pfenning, 2004, Simmons, 2012] we used for Sax represents some intermediate point.

As before, we proceed by types.
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Pairs. The constructor is straightforward.

e1 ↪→ V1 e2 ↪→ V2

(e1, e2) ↪→ (V1, V2)

Even this is not formal in this form of big-step semantics, it does capture soe aspect of fork/join
parallelism: evaluation of e1 and e2 can proceed independently and in parallel (the “fork”) and
the results can be combined to a pair (the “join”).

The elimination rule requires substitution.

e ↪→ (V,W ) e′(V,W ) ↪→ V ′

match e ((x, y) ⇒ e′(x, y)) ↪→ V ′

This does not intrinsically express the futures-based parallelism of Sax, because we assume that V
and W are large values and cannot be addresses or contain addresses. These would be foreign to
the level of abstraction we are working with in this big-step semantics.

Unit. As usual, this corresponds to a nullary pair.

( ) ↪→ ( )

e ↪→ ( ) e′ ↪→ V ′

match e (( ) ⇒ e′) ↪→ V ′

Sums. Again, fairly intuitive.

e ↪→ V

k(e) ↪→ k(V )

(k ∈ L)e ↪→ k(V ) e′k(V ) ↪→ V ′

match e {ℓ(xℓ) ⇒ e′ℓ(xℓ)}ℓ∈L ↪→ V ′

Top-level functions.

ei ↪→ Vi (∀i) e′(Vi) ↪→ V ′ F xi = e′(xi)

F ei ↪→ V ′

That’s already it! Substitution here is more straightforward than the general case because the
values we substitute are closed and therefore no capture of bound variables can occur.

3 Divergence

We can just say that e diverges if there is no V such that e ↪→ V . This is important because we
want compilation to preserve nontermination: if the original program does not have a value, then
the compiled program should not either.

We can only take this specification and turn it into inference rules through a mechanical pro-
cess of negation. However, the result will be a mixed inductive-coinductive characterization of
divergence.

For example, writing e ⇑ if e diverges, then for the construction of pairs we would have

e1 ⇑

(e1, e2) ⇑

e2 ⇑

(e1, e2) ⇑
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For destructions of pairs, we obtain several rules.

e ⇑

match e ((x, y) ⇒ e′(x, y)) ⇑

e ↪→ (V,W ) e′(V,W ) ⇑

match e ((x, y) ⇒ e′(x, y)) ⇑

The second rule is only sufficient if we know that expressions are well-typed. If not, the e might
evaluate to a value that is not a pair and the result would not have a value. It is in this rule that
divergence calls upon the evaluation judgment.

It is important that the definition of e ⇑ is interpreted coinductively, that is, permitting infinite
derivations. I believe a characterization using only rules under the usual inductive interpreta-
tion is impossible, because we would then have a decision procedure for termination to solve the
halting problem.

The unit is once again boring.

e ⇑

match e (( ) ⇒ e′) ⇑

e ↪→ ( ) e′ ⇑

match e (( ) ⇒ e′) ⇑

And, for sums:

e ⇑

k(e) ⇑

e ⇑

match e {ℓ(xℓ) ⇒ e′(xℓ)}ℓ∈L ⇑

(k ∈ L) e ↪→ k(V ) e′k(V ) ⇑

match e {ℓ(xℓ) ⇒ e′(xℓ)}ℓ∈L ⇑

Again, we need the assumption of typing so that (k ∈ L) will always be satisfied.
The desired theorem (which we haven’t proved) is:

If · ⊢ e : A then either e ↪→ V for some V or there is an infinite derivation of e ⇑.

4 Nested Pattern Matching

There are two principal approaches to adding nested pattern matching to the direct semantics.
One is to instrument the typing judgment so it creates an expression with one-level pattern match-
ing only. The other is to give a semantics directly. A good measure of correctness is to ascertain
that the two approaches are equivalent. We show here the second approach.

Recall the judgment
∆ ⊢ Ω▷K+ ⇐= C

where Ω is a sequence of types, and K+ is a non-empty collection of branches.
Dynamically, ∆ will be empty, and we will have a sequence of large values whose types corre-

spond to those prescribed by Ω. That is

V1 : A1 . . . Vn : An

V1 · · ·Vn : A1 · · ·An

with the evaluation judgment
V ▷K+
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We have the following rules:

V1 · V2 ·W ▷ (filter∗ (_,_) K+) ↪→ V ′

(V1, V2) ·W ▷K+ ↪→ V ′

W ▷ (filter∗ ( ) K+) ↪→ V ′

( ) ·W ▷K+ ↪→ V ′

V ·W ▷ (filter∗ k(_) K+) ↪→ V ′

k(V ) ·W ▷K+ ↪→ V ′
e′ ↪→ V ′

(·)▷ (· ⇒ e′) ↪→ V ′

(filter∗ x K+) = J+(x) W ▷ J+(V ) ↪→ V ′ x fresh

V ·W ▷K+ ↪→ V ′

The last rules is the most interesting because V can be of arbitrary type. Filtering returns a
nonempty sequence of branches J+ which may (and, in the linear case, must) depend on x so
we can substitute V in all branches of J+(x).
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