Lecture Notes on
Compilation

15-417/817: HOT Compilation
Frank Pfenning

Lecture 4
January 23, 2025

1 Introduction

In the last lecture we introduced first-order functional programming (if such a thing exists) based
on a computational interpretation of natural deduction for positive equirecursive types. For lack
of a better name, we’ll call this source language ND. In the lecture before we introduced an im-
perative intermediate language called SAX, based on a computational interpretation of the semi-
axiomatic sequent calculus.

In this lecture we show how to compile the former to the latter. This echoes a proof-theoretic
translation from natural deduction to the semi-axiomatic sequent calculus. We will also see our
very first optimization!

We also address one of the most annoying parts of programming in ND, namely that, so far,
we have to deconstruct data one constructor at a time. The solution is a form of matching with
nested patterns.

2 Compiling from ND to SAX

Recall the two typing judgments. First, for ND:

X1t Al xn s Ap e:A‘
value variables computation

where the z; stands for a large value of type A;, and e computes a large value of type A. Next, for
SAx:

x1:A1,.;,wn:Anl—P:: d: A
source addresses destination address

where the z; stand for addresses we may (and in the linear case, must) read and d is the destination
command P must write a small value to.

It looks possible to keep variables the same, because the large value represented by z; may be
read off the heap at address z;. On the other hand, the computation of e returns a value, while
the command P writes a value to destination d. This suggests defining a translation taking an
expression and a destination, returning a command

le]d =P

LECTURE NOTES JANUARY 23, 2025

Compilation L4.2

such that
I'ke: A implies T'F [e]d:: (d: A)
We now go through the few constructs we have one-by-one to see what the translation might be.

We should keep in mind the typing requirement above, and the intuition:

If e evaluates to large value V' then the heap at destination d after executing [e] d represents V.

Variables. This is easy:
[x]d=id d =

We can verify that this translation types correctly, and also follows our intuition about computa-
tion: if the heap at address x represents a value V, then the heap at d will do so afterwards.

Unit 1. The constructor is again straightforward.
[()]d = writed ()

The destructor for type 1 in ND is
match e with () = ¢

We can translate this if we allocate a new destination x for the value of ¢, and then read from z
matching against the unit value ().

[matche () =¢€]d = cutaz:1

[e] =
read z () = [¢'] d’ (x fresh)

Pairs A ® B. In this case, constructor expressions (e1, e3) require us to allocate two new destina-
tions, one for the value of e; and one for the value of es.

[(e1,e2)]d = cutz;: A
[e1] 21
cut z9 : Ao
[ea] 2
write d (x1,x2) (x1 and z fresh)

One problem we sweep under he rug here is how to obtain the types A; and As for e; and es.
In order to understand this, let’s verify that the translation is indeed type preserving as we claim.
What we write below would be one case in proving the preservation of types under the translation,
where [D;] and [D;] would be obtained by induction hypothesis.

D1 D-
].—‘1}_61<:A1 F2|_€2<:A2 7
®
Fl,rg F (61762) = A1 ®A2
[D1] Tyt [ea] @2 i (2o : Ag) a1 : Ay, a0 : Ay - write d (z1,22) :: (d: A1 ® Ag)
cut
Iy e xy o (z1 2 Ay) 21,De t AF _ = (d: A1 ® A)

cut
F17F2 "_ZZ (d : Al ®A2)

LECTURE NOTES JANUARY 23, 2025

Compilation L4.3

Here we have elided some of the commands resulting from the translation for the sake of read-
ability. We see that the translation may really be considered a translation of typing derivations
instead of terms. If we follow the structure of bidirectional derivations, the types we need for the
cuts (namely A; and A;) will be available to us.

The translation of the destructor follows the previous idea: allocate a new destination z, eval-
uate the match subject to write a pair to x, and then read the result from z.

[match e (z1,22) = €']d = cutz:A; ® Ay
[e] 2

read = (z1,x2) = [¢']d" (z fresh)

Again, we can map this onto a translation between typing derivations.

D &
IF'Fe= A1 QA Axzi:A|,20: A < A
RF
I'; A+ match e with (z1,22) = ¢ <— A’
PONY
[€]
[D] Ayxy i A,z Ag B[] d i (d 2 A

®L
FFle]z:(z: A ®As) Ayz: A ® Ay bread x (x1,22) = [d = (d' + A)

DAE _ o (d:A)

cut

Sums ©{¢: As}. Thereisn’t really anything new here, except that each branch of a match expres-
sion must be translated. We don’t show how to compute the types, but it follows the reasoning
for pairs.

[k(e)] d = cu[[t]T D Ag
wrietewd k(x) (x fresh)
[match e with {{(z/) = es}lper]d = cutz:d{l: Ar}rer
le] =

read © {{(z;) = [es] d'}ocr (z fresh)

This already concludes our compiler. Even if we don’t give a correctness proof, it doesn’t seem
like it should be difficult to construct.

3 Some Simple Examples

Say, we have in ND:

type nat = @{zero : 1, succ : nat}
defn one : nat = succ(zero())

The type will be the same in SAX, and the definition becomes

proc one (d : nat) = [succ(zero())] d

LECTURE NOTES JANUARY 23, 2025

Compilation L4.4

Its easy to work out the definition, but we recommend you go through it.

[succ(zero())] d = cut x; : nat

[zero()] a1
write d succ(x;)

= cut x1 : nat
cut x5 : nat
[O] z2
write z; zero(z2)
write d succ(z)

= cut z1 : nat
cut 5 : nat
write z2 ()
write 1 zero(xs)
write d succ(z)

This looks like a quite plausible implementation: we allocate cells on the heap and fill them with
the correct small values.
Let’s consider the predecessor as something with an elimination rule.

defn pred (x : nat) : nat = match = with
| zero(u) = zero(u)
| suce(y) =y

This becomes
proc pred (d : nat) (z: nat) =[...]d
where . .. is the match expression above. Following the translation we obtain

cut z : nat
id z x
read z {
| zero(u) = cut w: 1
idwwu
write d zero(w)
| succ(y) = id dy

}

Perhaps the only thing noteworthy here is that two of the three uses of the identity seems unnec-
essary. These are cuts followed by identities.

In proof theory, it has been observed that cut and identities are opposites and cancel each
other out. A cut allows us to use a succedent as an antecedent and the identity allows us to use an
antecedent as a succedent. These cancellation laws are
id ¢
AFA AAEC

cut £
AAFC ~ AAFRC
D id
I'A AR A
— cut D
'FA ~ TI'FA

LECTURE NOTES JANUARY 23, 2025

Compilation L4.5

Writing out the SAX commands that are assigned to these derivations, we see hidden renamings.

cut (z: A) (idzy) Qy) ~ Q)
cut (z: A) P(x) (dyx) ~ P(y)

It is easy to verify that these optimization not only preserve the types, but also the computational
behavior.

One can build these optimizations directly into the translation, or one can design a separate
optimization pass that eliminates cut/identity pairs of these two forms. From general principles,
we recommend the latter. Keep the translations as simple as possible (and therefore most likely
to be correct) and introduce optimizations separately. An advantage of this approach is that it is
also easier to measure the impact of an optimization. Our experience is that in the cut/identity
optimization are significant. In Lab 2, we may be able to back this up with some numbers.

4 Weak Inversion

From proof search in logical systems we are familiar with the concept of inversion. Essentially, a
rule is invertible if the premises of a rule are valid whenever the conclusion is. In goal-directed
(that is, bottom-up) proof search we can always apply the an invertible rule, reducing the goal of
proving a sequent to proving the premises of the rule without having to consider any alternatives.

Inversion is mostly formulated in the sequent calculus were all rules are read from the con-
clusion to the premises. There is also a version for natural deduction which turns out to be an
excellent basis for deriving pattern matching that is robust in ways we explain later.

For the positive fragment (which is what we have), we can break down as assumption when-
ever it is made. Since assumptions are made in each elimination rule we get the following recon-

struction of inversion.
THFA AFARC

IAFC

match
We do not add A to A directly, but put it on a “stoop” to be broken down before we return to the

usual hypothetical judgment. Already the first rule requires us to generalize our viewpoint:

AFA-BpC -
AFA® B> C

We should be able to continue to break down both A and B separately, so instead of a single
proposition (which for us will be a type), we have a whole sequence of them. We'll call these 2.
Then we get

AFA-B-Q>C

AI—A®B~Q>C®

The unit just disappears.
AFQ>C

AF1-Qp>C

For sums, we get as many premises as there are summands.

(AFA>C) (Wel)
AF@{[:Ag}gELDC

®L

LECTURE NOTES JANUARY 23, 2025

Compilation L4.6

When the list of possibly invertible propositions is empty, we revert back to the usual judgment.

AFC

—————— empty
AF()>C

As given, the system does not work for recursive proposition (think recursive type like nat) be-
cause we would have to continue ad infinitum. So we can cut off the inversion phase at any point
at our discretion, moving the leftmost proposition into the collection of hypotheses.

AAFQ>C

—— stop
AFA-Q>C

So, inversion is allowed, but not forced, which is why we call this weak inversion.

5 Weak Inversion and Pattern Matching

It turns out that allowing (weak) inversion corresponds to allowing nested patterns in match ex-
pressions. This has been made explicit and investigated in depth by Zeilberger [2009]. We use a
somewhat different notation, more suited to our programming language.

The pattern themselves are symmetric to large values, but can stop at variables.

Patterns p.q = (p1,p2) | () [k(p) |z
Pattern Sequences p n= p-pl()

We need pattern sequences to match the sequences of types 2 (formerly interpreted as proposi-
tions). A single branch in a pattern matching expression then has the form

Pi-+"Pn =€
We check a sequence of such branches against a sequence of types, in the judgment
AFA - Ay (p1-pn=e) <=C

The ()* here indicates that we have a finite sequence of such branches, where each may have
different pattern sequences and expressions, but each pattern sequence must have the same length.

Just as the logical inversion judgment distinguishes cases on A;, we will do the same, projec-
tion out the relevant patterns. We write K for a branch, and K* for a sequence of branches. filter*
applies the operation to each branch and collects the results.

AFA-B-Qp (filter” (_,_) K*) <= C
AF(A®B)- Q> K"<=C

®L

where
filter (—7—) ((x,y)§:>e) = xT-y-qgq=e

The filter operation for pairs results in an error in all other cases.
AF Qo (filter* () K*) <= C
AF1-Qp> K*<=C

1L

LECTURE NOTES JANUARY 23, 2025

Compilation L4.7

where
filter () (()-g=¢) = g=ce¢

The filter operation for unit results in an error in all other cases.
Finally, the filter for sums.

(AF Ay - Q> (filter* (0() K*) <= C) (V€ L)
A"@{E:Ag}gGL-QDK*cC

®L

where each application of filter® ¢(_) returns either a single branch or none. These are then con-
catenated.

filter ¢(_) (k(p)-G=e€) = p-g=e forl=k

filter £(_) (k(p)-g=¢) = (") for ¢ # k

The filter operation for labeled patterns results in an error in all other cases.

Filtering based on sums is quite lenient in the sense that extraneous branches in the pattern
match are ignored. Based on the types of the subject of the match, these are unreachable and
therefore ignoring them will not lead to a runtime error. On the other hand, it might seem to be a
likely error if the programmer has written extraneous branches. A brief further remark on that in
the final section of this lecture’s notes. When we reach the empty sequence of types, we also must
reach the empty sequence of patterns, and revert back to our usual typing rules. Considering we
are in the bidirectional system, this is a checking judgment.

AFe<—=C
AF()>()=e<=C

empty

It is an error if the empty sequence of types is not matched by an empty sequence of patterns.
Also note that there can only be a single branch in order to avoid nondeterminism (or redundant
patterns, however, one wants to look at it). So we are less lenient here as in the case of extranous
patterns.

Finally, we come to variable patterns which represent a kind of special case because they are
not driven by the structure of the type.

Az A Qb filter” 2 K* <= C (z fresh)
AFA-Q> K" <+<=C

stop

where
filterz (y-g=e(y)) = 7= e(x)

Note that the bound variable name y could be different from x, but that we substitute the fresh
name z for y. There may be multiple such branches (which are disambiguated later based on (2 as
it matches g), but the pattern in each of them must be a variable.

Overall, this form of pattern matching has a distinct left-to-right flavor in the way it analyzes
the match. Moreover, it does not allow some catch-all patterns that can often be useful. The justi-
fication for this is three-fold. First, this form of nested checking of patterns can be compiled with-
out contortions to the one-level-at-a-time matching provided by read commands in SAX. Second,
when patterns are matched sequentially (including catch-alls for patterns as yet unmatched), as-
sessing linearity of the resulting code is less clear. Finally, under the parallel semantics permitted
by SAX, it matters whether cells are read. For example, the two simple matches

LECTURE NOTES JANUARY 23, 2025

Compilation L4.8

match a with zero(u) = zero(u)
match a with zero() = zero()

have different behaviors! The first can proceed as soon as a small value zero(b) is written into the
cell with address a, while the second must also wait for the unit value to be written into b.

At some later point in the course we might consider more general forms of pattern matching.
Some investigations in this direction have been made by Stock [2020]. For Lab 2, when you imple-
ment nested pattern matching, we are lenient as explained above. We do not write out how the
definition of projection carries over to compilation. This could be done either as a translation from
ND to ND, eliminating nested pattern matches, followed by the translation we gave, or it could be
built into a generalized translation from ND to SAX.

6 Subtyping and Intersection Types

We did not cover this in lecture, but one reason one might want to consider allowing extraneous
branches is to have nice properties for subtyping. In generally, we would want the following
metatheorems to be true:

1. fT'Fe: Aand A< BthenI'te: B
22 fA<BandT,z:BFe:CthenT,z: Ate: C

The first just transports to expressions the idea that any large value of type A should also have
to B if A < B. The second exploits the same definition, but in reverse because it is used on vari-
ables that stand for values. However, the second part will be false if we do not allow extraneous
branches. For example, with

+{’zero : 1, ’"succ : nat}
+{ "succ : nat}

type nat
type pos

we have pos < nat. The expression

match x with (
| "zero() => ’'zero()
| 'succ(y) => vy

)

checks with x : nat. But unless we allow extraneous branches, it would not check at x : pos, even
though pos < nat.

More generally, we might want to assign more than one possible type to a given definition.
For example,

type nat = +{’zero : 1, ’'succ : nat}
type pos = +{ "succ : nat}
type zero = +{’zero : 1}

decl pred (x : nat) : nat

decl pred (x : pos) : nat

decl pred (x : zero) : zero

LECTURE NOTES JANUARY 23, 2025

Compilation L4.9

defn pred x = match x with (
| "zero() => "zero()
| "succ(y) =>y

)

When checking the second type, we do not consider the zero branch, when checking the third type,
we do not consider the succ branch. And yet, it is perfectly valid to assign all three types to the
given definition of pred.

Assigning multiple types to the same expression is the domain of intersection types. If they are
considered only at the top level as here, we do not form any explicit intersections, but some of the
issues and solutions remain the same.

References

Benedikt Stock. General pattern matching for session-typed concurrent programs. Bachelor The-
sis, Jacobs University, Bremen, Germany, May 2020.

Noam Zeilberger. The Logical Basis of Evaluation Order and Pattern-Matching. PhD thesis, Depart-
ment of Computer Science, Carnegie Mellon University, May 2009. Available as Technical Re-
port CMU-CS-09-122.

LECTURE NOTES JANUARY 23, 2025

	Introduction
	Compiling from Nd to Sax
	Some Simple Examples
	Weak Inversion
	Weak Inversion and Pattern Matching
	Subtyping and Intersection Types

