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1 Introduction

So far, we have seen type checking for Sax [DeYoung et al., 2020], an intermediate language, and
had a bit of experience writing code in it (hopefully enough experience that you are on board
with not wanting to hand-write a lot of Sax code). The goal of today’s lecture is to introduce our
front-end functional programming language (or at least part of it). We will for now stick to just
the positive types and remain purely linear. This is a fragment of adjoint natural deduction [Jang
etal., 2024].

2 Terms and Base Typing Rules

We first review the types that we have so far:

Au=1]AQB | ®per{l: Av}

We must now find terms that correspond to each type. Unlike in Sax, where all the terms were
reads and writes, we are now in a functional programming language, and so our terms will no
longer have direct correlation to memory. We go through the types one-by-one, assigning terms
and constructing their typing rules. Because we are now in a natural deduction setting and not
in sequent calculus, our rules will be a bit different. Rather than left and right rules (or, in the
case of Sax, left rules and axioms), we now have introduction and elimination rules. We think of
introduction rules as introducing or constructing a term and of elimination rules as eliminating or
destructing a term.

First, let’s define the terms for 1. We write the value of type 1 as (), and it has the following
introduction rule:

17
‘(-1

Note that the context that we check the unit in must be empty in a linear system. To destruct the
term, as with all positive types, we use a match as follows:

'ke:1 AkFé€:C
I'AF matchewith ()=¢:C

1F
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I' and A must be disjoint to ensure that no variable in the context is used more than once. Next,
we define the terms for ®. Again, as is usual, this corresponds to a pair of terms. The rules are as
follows:

I'ikFe:A; Toleg: Ay ; I'Fe: A1 @Ay A,x1:A1,29: A€ :C
&
['1,ToF (e1,e2): A1 ® Ay ', A+ match e with (z1,29) = ¢ : C

RF

Again, to ensure linearity, contexts must be disjoint.
For sums, we have the following rules:

keL Tke:Ag Prhe:®{l: A}oer (Ayx:Apke:C) (VeL)

ol Sy
Ttke:®{l: As}oer I, A - match e with {{(x) = e/}ser : C

Lastly, we need a rule for checking variables:

— var
r:AFx: A

Note that the context here must only contain 2 and no other variables, again, this is to ensure
linearity. If other variables were present, then we would be able to pretend they had been used.

3 Typechecking

While the above rules are all correct, they do not yet give us a way to actually implement a type-
checking algorithm. There are two parts missing here. Part 1: How do we actually know what
types we should be checking terms at? Part 2: As with Sax type checking, the context splits here are
nondeterministic, so how do we change that? We start with addressing the first of these concerns
using bidirectional type checking [Dunfield and Krishnaswami, 2022].

3.1 Bidirectional Type Checking

The main change from the previous rules to bidirectional rules is that we split the judgment e : A
into two as follows:
e A

s=— A

We read the first of these as e checks against A and the second as e synthesizes A. When thinking
about this from the implementation standpoint, we think of both the term and the type being
input in the first case, and we verify that the term e does in fact have the type A, and we think of
only the term being input in the second case, and we try to figure out (synthesize) the type for the
term. In general, in all our introduction rules, the principal term will be a checked, and in all our
elimination rules, the principal term will synthesize. There is then some ambiguity about what
happens to the other pieces. Let’s walk through all of these. As before, we begin with unit. The
introduction rule is straight forward:

— 11
F()<=1

For the elimination rule, we start with what we know:

FFs=1 Are?7C
I'yA+F match swith () =¢€'?7C
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There is now ambiguity about whether the other two judgments should be checking or syn-
thesis. From a computational standpoint, either would make sense, but to simplify type checking,
making these checking judgments helps a little bit. This is because when we run type checking,
we want to first apply all the introduction rules we can, followed by the elimination rules. If we
are at a boundary point where we have to start applying elimination rules, we are still in a check-
ing direction, and so it would be helpful to not have to do something to move directions. Another
reason to keep these as checking judgments is related to proof theory and the relationship between
the sequent calculus and natural deduction. We make anything that would appear to the right of
the turnstile in sequent calculus a checking judgment, while anything that would appear to the
left of the turnstile a synthesizing one. This has the consequence that bidirectional typing checks
exactly the normal forms, that is, terms that cannot be directly reduced. Therefore the top-level
definitions of metavariables are the initial source of computation.

The upshot is that we have the following rule:

I'Fs=1 Akle << C
A+ match swith ()= ¢ < C

1F

Using similar reasoning, we derive (almost) the rest of the bidirectional rules:
I'iFei<= A Dot ey Ay ; I'Es= A1 ®As A,x1:A1,29: A2 = C
®
', Tk (e1,62) <= A1 ® A I, A + match s with (z1,22) = ¢/ < C

QF

(ke L) The<« A F'Fs= ®{l: A}ver (Axp:Apybe<—=C) (WelL)
ol
PFk(e) <= o{l: As}oer I, A F match s with {{(xy) = ep}per <= C

We still need to find the correct direction for the variable rule, and it turns out we need one more
rule as well. First, we start with the variable rule. Since we maintain the types of variables at all
times variables synthesize their types as follows:

var
r: A= A

Now lets try and prove a very simple type derivation (assuming we are a magical type checker
that knows how to split contexts correctly):
7 ?
$1:A}—$1<:A ro:BFxz9o<— B
x1:Ayxg: BF (21,20) <= AR B

We hit a problem here. We are in the checking phase, but have variables, so it seems like we are

stuck! We need one more rule:
'Fe= A

=/<

'Fe<=A
Although this rule is correct, to make it more algorithmic, we think about how we would go about
implementing this. Remember that synthesis takes only the term as input, not the type, so we
don’t know for sure that we will synthesize A. So we actually should write

'Fe= A" A=A
=/<
e« A

This rule can also easily be modified to take into account subtyping. With this rule we can now
finish the partial proof from above by applying this change of direction rule on both sides and
then the variable rule.
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3.2 Additive Typing

We now address the second issue, building on top of the bidirectional rules. The construction here
is very similar to that from Sax. We propagate one input context I', calculating an output context
= which specifies the variables that were used in that derivation. All context operations on these
output contexts will remain the same as for SAX.

'ts=1/E Tk < C /=

F}—()<:1/-1I 'k match swith () = ¢ < C/Z;5, e
F'Fei<—=A1/E1 The<=Ay /5,
'l (e1,e2) <= A1® Ay / E1; 50 o
FFs= A1 ®Ay/Z1 T,z1:A1,10: AsF e —=C /5, OB

I'F match s with (z1,29) = € <= C / Z1; ((E2 \ 21) \ x2)

(kel) I'Fe<=A;/E
@I
FEke<=®{l: Ap}er / E

FFSﬁ@{E:Ag}gGL/El (P,ngAgF€g<:C/Eg Eg\xg:EQ) (VZGL)

I' - match s with {{(xy) = es}pep <= C /| E1;E

OF

The=— A'/E A=A
var :>/<:
l're=A/z:A 'Fe«=A/E

Lastly, we need to consider the top level definition rules. Similarly to Sax, we will have a top
level signature ¥ of definitions that can be mutually recursive. We write

Yu=(0) ] f[A]l:A=e,X

where A is a context of variables and their types and represents the inputs to the definition named
f. Ais the return type of the definition. To make a call to such a definition we need the following
type checking rule, which just checks that each of the inputs to the call are the correct type.

fIA]:A=ecX THO=A/E
FcallfO0 = A/E

call

There are a few new things in this rule. First, 0 is a list of expressions whose values will be sub-
stituted for variables in A during execution. Second, the second premise is not yet fully defined.
What does it mean to check a list of expressions against a context? As should be expected, this is
just a point-wise definition:

FFOe=A/Z, The«A/5,
T'F(0e) < (Ax:A)/Z ;5 TH()e=()/()

Now, to check the full list of definitions that we have, we need to check each definition one-by-
one. To do so, we iterate through all of them with a new judgment sig which just indicates that
signature is well typed. The rules are as follows:

Fe Ysig Abee=A/Z E=A
Fo X/, fIA] - A = esig Fs (¢) sig
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The last premise of the first rule here ensures that all the inputs (A) were in fact used. The code
that was written during lecture can be found on the website.
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