
Lecture Notes on
Linear Typechecking

15-417/817: HOT Compilation
Frank Pfenning

Lecture 2
Thursday, January 16, 2025

1 The Significance of Linearity

We first explore the strictures of linear typing a bit. Recall that each variable x and yi in the
judgment stands for an address of a cell at runtime.

y1 : B1, . . . , yn : Bn︸ ︷︷ ︸
read from

⊢ P :: (x : A)︸ ︷︷ ︸
write to

Linearity guarantees that each variable yi will be used, and variable x will be written to, assum-
ing that the P terminates. The state of the execution consists of multiple semantics object cell c v
(where all the addresses c and distinct and v is a small value) and some processes proc P repre-
senting running processes. We reach a final configuration if it consists entirely of memory cells.
Recall the rules:

proc (write c v) −→ cell c v
cell c v, proc (read c K) −→ proc (v ▷ K)

proc (cut (x : A) P (x) Q(x)) −→ proc P (a), proc Q(a) (a fresh)
cell b v, proc (id a b) −→ cell a v

proc (call p a b) −→ proc Q(a, b) (proc p x y = Q(x, y) ∈ Σ

() ▷ () ⇒ Q = Q
(a, b) ▷ (x, y) ⇒ Q(x, y) = Q(a, b)
k(a) ▷ {ℓ(yℓ) ⇒ Qℓ(yℓ)}ℓ∈L = Qk(a)

A step in multiset rewriting matches part of the configuration (which is unordered) against
the left-hand side of the rule and replaces it by the right-hand side. In the rules for read and id
the cell on the left-hand side therefore disappears from the configuration, which corresponds to
deallocation of the cell. Because of linear typing, this means that at the end of the computation only
cells reachable from the initial destination of the parameterless procedure will remain allocated in
the configuration. In other words, we do not need a traditional garbage collector.

An interesting observation is that because all types are positive, we can actually program pro-
cedures that will deallocate or duplicate values. In the live-coded file lex02.sax we program deal-
location and duplication functions for some types.

LECTURE NOTES THURSDAY, JANUARY 16, 2025

http://www.cs.cmu.edu/~fp/courses/15417-s25//lectures/02-typechecking/lec02.sax

Linear Typechecking L2.2

2 Two Problems with Typing

Let’s look at just two of the rules and examine issues with implementing them.

y : A ⊢ id x y :: (x : A)
id

Γ ⊢ P :: (x : A) ∆, x : A ⊢ Q :: δ

Γ,∆ ⊢ cut (x : A) P Q :: δ
cut

The first problem is visible in the identity rule: we are given y : B ⊢ id x y :: (x : A) and we should
accept the identity as well-typed if B = A. But when are two types equal? In many of today’s
functional languages, recursive type definitions are generative, so a type name is only equal to
itself. But here we have equirecursive definitions, so a type name is equal to its definiens. In the
presence of recursion, this creates the problem of deciding the equality of two types.

The second problem is exemplified in the cut rule. Each variable is supposed to be used exactly
once, but some variables will appear in P and some on Q, so how do we “split” the context we
have in the conclusion?

We’ll address the two issues in turn.

3 Additive Algorithmic Typing

Assuming the problem of type equality can be solved, here is an approach towards designing an
algorithm for linear type-checking. Because we don’t know how to split the context, we just pass
it to both premises of a cut. For commands that check, we return the context that was actually
used in its type-checking. Then we combine the two and fail if (for example) a variable is used on
both sides. This new judgment is Γ ⊢ P :: (x : A) / Ξ, where Γ, P , x, and A are inputs, and Ξ is an
output if the typing succeeds. Ξ contains the variables that are actually used in P . In other words:

If Γ ⊢ P :: (x : A) / Ξ then Ξ ⊢ P :: (x : A).

Conversely:

If Ξ ⊢ P :: (x : A) then Γ,Ξ ⊢ P :: (x : A) / Ξ for all Γ disjoint from Ξ.

Then a first version of the cut rule then might be

Γ ⊢ P :: (x : A) / Ξ1 Γ, x : A ⊢ Q :: δ / Ξ2

Γ ⊢ cut (x : A) P Q :: δ / Ξ1 ; Ξ2

cut??

where Ξ1 ; Ξ2 merges two distinct contexts and checks that they are disjoint (see the definition
below). However, this is not quite right. We also need to make sure that x is really used in the
typing of Q, and that is doesn’t escape its scope. So we get

Γ ⊢ P :: (x : A) / Ξ1 Γ, x : A ⊢ Q :: δ / Ξ2

Γ ⊢ cut (x : A) P Q :: δ / Ξ1 ; (Ξ2 \x)
cut

Here, Ξ2 \x removes (x : A) from Ξ and also verifies such an x is actually in Ξ2. This means,
We define the merge operation Ξ1 ; Ξ2:

(Ξ1, x : A) ; Ξ2 = (Ξ1 ; Ξ2), x : A provided x ̸∈ Ξ2

Ξ1 ; (Ξ2, x : A) = (Ξ1 ; Ξ2), x : A provided x ̸∈ Ξ1

(·) ; (·) = (·)

LECTURE NOTES THURSDAY, JANUARY 16, 2025

Linear Typechecking L2.3

In other cases, the merge fails. And the subtraction operation:

(Ξ, x : A) \x = Ξ
(Ξ, y : B) \x = (Ξ \x), y : B provided y ̸= x

In the remaining case, subtraction fails.
For the remaining rules, we just have to keep the defining property in mind: the output context

Ξ contains the variables actually used. One note: in the rule for ⊕L, the subtraction Ξℓ \ yℓ must
yield the same Ξ in each branch.

y : A ∈ Γ

Γ ⊢ id x y :: (x : A) / (y : A)
id

Γ ⊢ P :: (x : A) / Ξ1 Γ, x : A ⊢ Q :: δ / Ξ2

Γ ⊢ cut (x : A) P Q :: δ / Ξ1 ; (Ξ2 \x)
cut

Γ ⊢ write x () :: (x : 1) / (·)
1X

x : 1 ∈ Γ Γ ⊢ P :: δ / Ξ

Γ ⊢ read x () ⇒ Q :: δ / Ξ ; (x : 1)
1L

x : A ∈ Γ, y : B ∈ Γ

Γ ⊢ write z (x, y) :: z : A⊗B / (x : A) ; (y : B)
⊗X

z : A⊗B ∈ Γ Γ, x : A, y : B ⊢ Q :: δ / Ξ

Γ ⊢ read z (x, y) ⇒ Q :: δ / (Ξ \x \ y) ; z : A⊗B
⊗R

(k ∈ L) y : Ak ∈ Γ

Γ ⊢ write x k(y) :: (x : ⊕{ℓ : Aℓ}ℓ∈L) / (y : Ak)
⊕X

(x : ⊕{ℓ : Aℓ}ℓ∈L ∈ Γ Γ, yℓ : Aℓ ⊢ Qℓ :: δ / Ξℓ Ξ = Ξℓ \ yℓ) (∀ℓ ∈ L)

Γ ⊢ read x {ℓ(yℓ) ⇒ Qℓ}ℓ∈L :: δ / Ξ ; x : ⊕{ℓ : Aℓ}ℓ∈L

⊕L

(y : B ⊢ p :: (x : A)) ∈ Σ Γ ⊢ (b/y) :: (y : B) / Ξ

Γ ⊢ call p a b :: (a : A) / Ξ
call

Γ ⊢ η1 :: ∆1 / Ξ1 Γ ⊢ η2 :: ∆2 / Ξ2

Γ ⊢ (η1, η2) :: (∆1,∆2) / (Ξ1 ; Ξ2) Γ ⊢ (·) :: (·) / (·)

y : A ∈ Γ

Γ ⊢ (y/x) :: (x : A) / (y : A)

Figure 1: Additive Algorithmic Typing

The idea of subtractive typing is to change the judgment to

ΓI ⊢ P :: (x : A) / ΓO

there ΓI is the usable input, and ΓO are the antecedents not used in P . The rule of cut then becomse

ΓI ⊢ P :: (x : A) / ΓM ΓM , x : A ⊢ Q :: δ / ΓO x ̸∈ ΓO

ΓI ⊢ cut (x : A) P Q :: δ / ΓO

cut

The correctness theorems for subtractive typing are more complicated, although it may provide
better error messages in some cases because errors are generally detects as soon as they arise. In
other words, by passing Γ to both premises of a cut, we lose some information present in the
subtractive version.

If ΓI ⊢ P :: (x : A) / ΓO then ΓI − ΓO ⊢ P :: (x : A)

LECTURE NOTES THURSDAY, JANUARY 16, 2025

Linear Typechecking L2.4

4 Type Equality

Consider the type definitions

type nat = ⊕{zero : 1, succ : nat}
type unary = ⊕{zero : 1, succ : unary}

Then nat and unary are inhabited by exactly the same large values: zero(), succ(zero()), etc. There-
fore, these two types should be considered equal. Because of the recursion in their definition, we
use a coinductive definition of this equality, allowing infinite derivations.

1 = 1
1S

A1 = B1 A2 = B2

A1 ⊗A2 = B1 ⊗B2
⊗S

L = K Aℓ = Bℓ (∀ℓ ∈ L)

⊕{ℓ : Aℓ}ℓ∈L = ⊕{k : Bk}k∈K
⊕S

There are no explicit rules for names, because we can implicitly replace them by their definiens.
And this is where the problem of infinite derivations can arise. For example, we can construct:

1 = 1
1S

1 = 1
1S

...
nat = unary

nat = unary
⊕S

nat = unary
⊕S

So how can we decide type equality, since we cannot produce infinite derivations? The point is to
produce finite representations of them, namely circular derivations. If we have n types occurring
in a program, there are at most n2 equalities that may occur on any branch. Therefore, we must
eventually either fail, or succeed in closing off the dereivation with an axiom like 1S or a loop.

This interpretation of the rules says: no matter how long we try to find a counterexample, there
is none.

5 Subtyping

Our notion of equirecursive definition suggests an immediate generalization. For example, if we
define

type pos = ⊕{succ : nat}
then every (closed, large) value of type pos will also have type nat. Therefore, it would be perfectly
okay to allow

y : pos ⊢ id x y :: (x : nat)
id

However, the other direction would not work: we cannot move an small value of type nat into a
call that requires its content to be of type pos. The rules for subtyping are just a small variation of
the rules for type equality.

1 ≤ 1
1S

A1 ≤ B1 A2 ≤ B2

A1 ⊗A2 ≤ B1 ⊗B2
⊗S

L ⊆ K Aℓ ≤ Bℓ (∀ℓ ∈ L)

⊕{ℓ : Aℓ}ℓ∈L ≤ ⊕{k : Bk}k∈K
⊕S

LECTURE NOTES THURSDAY, JANUARY 16, 2025

Linear Typechecking L2.5

But remember that the rules are coinductive, allowing infinite derivations.
We then modify each of the initial typing rules to allow subtyping wherever we checked two

types to be equal before.

A′ ≤ A

y : A′ ⊢ id x y :: (x : A)
id

Γ ⊢ P :: (x : A) ∆, x : A ⊢ Q :: δ

Γ,∆ ⊢ cut (x : A) P Q :: δ
cut

· ⊢ write x () :: (x : 1)
1X

Γ ⊢ P :: δ

Γ, x : 1 ⊢ read x () ⇒ Q :: δ
1L

A′ ≤ A B′ ≤ B

x : A′, y : B′ ⊢ write z (x, y) :: z : A⊗B
⊗X

Γ, x : A, y : B ⊢ Q :: δ

Γ, z : A⊗B ⊢ read z (x, y) ⇒ Q :: δ
⊗R

(k ∈ L) A′
k ≤ Ak

y : A′
k ⊢ write x k(y) :: (x : ⊕{ℓ : Aℓ}ℓ∈L)

⊕X
Γ, y : Aℓ ⊢ Qℓ :: δ (∀ℓ ∈ L)

Γ, x : ⊕{ℓ : Aℓ}ℓ∈L ⊢ read x {ℓ(yℓ) ⇒ Qℓ}ℓ∈L :: δ
⊕L

(y′ : B′ ⊢ p :: (x′ : A′)) ∈ Σ A′ ≤ A Γ ⊢ (y/y′) :: (y′ : B′)

Γ ⊢ call p x y :: (x : A)
call

Γ1 ⊢ σ1 :: ∆1 Γ2 ⊢ σ2 :: ∆2

Γ1 ; Γ2 ⊢ (σ1, σ2) :: (∆1,∆2) · ⊢ (·) :: (·)
A ≤ A′

x : A ⊢ (x/x′) :: (x′ : A′)

We leave it to you as part of Lab 1 to combine, somehow, the power of subtyping with the
technique of additive algorithmic typing (or some other form of algorithmic typing).

LECTURE NOTES THURSDAY, JANUARY 16, 2025

	The Significance of Linearity
	Two Problems with Typing
	Additive Algorithmic Typing
	Type Equality
	Subtyping

