
15-411 Compiler Design, Fall 2013

Lab 6 - Optimization

Instructor: Frank Pfenning
TAs: Robbie Harwood, Sri Raghavan, Max Serrano

Compilers due 11:59pm, Thursday, December 5, 2013
Papers due 11:59pm, Tuesday, December 10, 2013

1 Introduction

The main goal of the lab is to explore advanced aspects of compilation. This writeup describes the
option of implementing optimizations; other writeups detail the option of implementing garbage
collection or retargeting the compiler. The language L4 does not change for this lab and remains
the same as in Labs 4 and 5.

2 Requirements

You are required to hand in three separate items:

1. The working compiler and runtime system that implement optimizing transformations,

2. any additional benchmarks or tests you devised, and

3. a term paper describing and critically evaluating your project.

2.1 Compilers

Your compilers should treat the language L4 as in Labs 4 and 5. While we encourage you to continue
to support both safe and unsafe compilation, you may commit to one and default to unoptimized
compilation in the other.

If you are implementing optimization for your L4 compiler, you have complete freedom which
ones to choose. The ones discussed in lecture so far and the textbook should be considered generally
important and constitute good choices. If you would like to specifically target safe compilation you
may pick array bounds check elimination and optimizations based on the induction variable of a
loop.

Grading criteria includes:

1. The correctness of the compiler (including the optimizations). Make sure that you do regres-
sion testing on all test cases accumulated through the semester.

1



2. The scope and complexity of the implemented optimization(s). You can implement several
widely simple, widely applicable optimizations such as the options in the lab 5 handout. It is
also acceptable to go for a few complex optimizations such as induction variable elimination
and array bounds elimination, or sparse conditional constant propagation.

3. The efficiency of the compiled code (as opposed to the compiler). You should be able to
measure (within reasonable bounds of experimental error) that the compiled code is smaller
and/or faster where the optimization is applicable, and does not cause any significant perfor-
mance regression where the optimization is not applicable.

4. The code quality of the optimization in terms of algorithm, readability, and modularity are
considered.

5. The efficiency of the compiler (as opposed to the compiled code). We care about constant
factors to the extent that you should be able to compile any of the test cases we have accu-
mulated throughout the semester in under 20 seconds.

An overarching requirement is that you code should be documented. Without documentation,
we may not be able to evaluate the aforementioned—therefore internal documentation of your
sources may indirectly affect your grade.

2.2 Tests and Measurement Tools

An important aspect of optimization is correctly identifying opportunities for optimization and
verifying that your optimizations lead to improvement in the quality of code. Therefore, you will
be graded on these criteria. Opportunities for optimization may be present in common programming
idioms, inefficiencies in code as it is written, or inefficiencies inserted by your compiler as a part
of reducing it from a more expressive language to a less expressive language. Obvious metrics for
performance are the number of cycles taken to finish running a test, and the size of the code emitted
by your compiler.

Your optimizations should be applicable to realistic code – not code contrived for the purpose
demonstrating one optimization or another. By default, we will be using the benchmarks of Lab
5, but you should probably add some both natural and contrived tests of your own. To this end,
feel free to search through all of the test cases that we have accumulated through this semester for
programs that contain commonly used data-structures and algorithms to assemble to performance
test suite. You are not required to write new performance test cases. However, if you write any and
use them to collect measurements, please hand them in. You may also consult the 15-122 course
web page, for sample programs. In each case, make sure that it is obvious from the file name or
comments whether a test case is something you newly created, or something you borrowed from
previous test suites or other sources.

2.3 Term Paper

Your paper shold follow this outline.

1. Introduction. This should provide an overview of your implementation and briefly summarize
the results you obtained.

2



2. Description of Optimizations. This section should include a concise description of the opti-
mizing transformations you applied, as in Lab 5. Explain any change you needed to make
to your compiler to facilitate the addition of these optimizations, and describe any special
datastructures or algorithms you used.

3. Testing. Explain the methods you used to test your optimizations, and critically analyze the
effectiveness of your testing methodology.

4. Analysis. Based on the measurements you made, give a critical analysis of how well your
optimizations work, and what type of code it benefits.

The term paper will be graded. There is no hard limit on the number of pages, but we expect
that you will have approximately 5-10 pages of reasonably concise and interesting analysis to
present.

3 Deadlines and Deliverables

3.1 Compiler Files (due 11:59pm on Thu Dec 5)

Your compilers will be automatically benchmarked with the same code as in Lab 5. As for all labs,
the files comprising the compiler should be collected in a directory compiler/ which should contain
a Makefile. Important: You should also update the README file and insert a roadmap to your
code. This will be a helpful guide for the grader.

Issuing the shell command

% make l4c

should generate the appropriate files so that

% bin/l4c --safe -On <args>

% bin/l4c --unsafe -On <args>

will run your L4 compiler in safe and unsafe modes, respectively. You can choose to support only
one of these modes. The -On flag will run optimization level n. It should accept n = 0, 1, or 2.

The command

% make clean

should remove all binaries, heaps, and other generated files.
All your material must be committed into lab6opt in the same way that you submitted your

compiler in previous assignments.

3.2 Tests and Measurement Tools (due 11:59pm on Tue Dec 4)

In a directory called bench/, include any tests that you used for the purpose of performance mea-
surements, and include the sources to any tools that you developed for the purpose of performance
testing. If you have any of your own tools, include a brief README file explaining how to build
and use your tools.

3



3.3 Term Paper (due 11:59pm on Tue Dec 10)

Submit your term paper in PDF form via Autolab before the stated deadline. Early submissions are
much appreciated since it lessens the grading load of the course staff near the end of the semester.
You may not use any late days on the term paper describing your implementation of
Lab 6!

4 Notes and Hints

• Start small. If you optimize, make sure your instruction selection and register allocation are in
decent shape. Improving these is definitely a form of optimization and should be documented
in your term paper.

• Apply regression testing. It is very easy to get caught up in the race to faster code.

• Checkpoint frequently. A convincing term paper should compare before and after for your
optimizations, as well as compare to the reference implementation. In order to do this you
need to be able to run various versions of the compiler and collect statistics, so make sure
you can continue to run older versions. Hand in frequently. Also, it is quite possible you
may not be able to finish that last, grand optimization; having a decent prior hand-in is good
insurance.

• Read the assembly code. Just looking at the assembly code that your compiler produces will
give you useful insights into what you may need to optimize. You can also use the reference
compiler on Andrew Unix machines to produce C code corresponding to your test cases.
Then, you can use gcc on the C code and compare the performance.

4


