
15-411 Compiler Design, Fall 2013

Lab 5

Instructor: Frank Pfenning
TAs: Robbie Harwood, Sri Raghavan, Max Serrano

Compilers due 11:59pm, Saturday, November 16, 2013
Papers due 11:59pm, Monday, November 18, 2013

1 Introduction

The goal of the lab is to implement some optimization for the language L4, which remains unchanged
from Lab 4. This includes an unsafe mode in which your compiler may assume that no exception
will be raised during the execution of the program (except due to assert). This affects operations
such as integer division, arithmetic shift, array access, and pointer dereference.

2 Preview of Deliverables

In this lab, you are not required to hand in any test programs, since there is no change in language
specification. Instead, we will be testing your compilers on the test suites from Labs 1–4. We
will also test the efficiency of your generated code on benchmark tests created by the course staff.
Since you have a choice between multiple different optimizations, the benchmarks are designed as
realistic programs rather than to verify that any particular optimization is taking place.

You are required to turn in a complete working compiler that translates L4 source program into
correct target programs in x86-64. In addition, you have to submit a PDF file which describes and
evaluates the optimizations that you implemented.

3 Compilation to Unsafe Code

The --unsafe flag to your compiler allows it to assume that no exceptions will be raised during the
execution of the program except ones due to assert. This means you can eliminate some checks
from the code that you generate. You are not required to eliminate all checks, but it will make
your compiled code slower if you do not take advantage of this opportunity at least to some extent.

Note that this does not in any way constitute an endorsement of unsafe compilation practices.
It will, however, give you a more level playing field to compare the efficiency of your generated code
against gcc and others in the class.

1



4 Optimizations

Beside unsafe mode, you are required to implement and evaluate at least four optimizations from
the list below.

1. Instruction selection. You may optimize instruction selection to generate more compact
or faster code. This includes generating good code for conditionals (e.g., avoiding set in-
structions), loops (e.g., enabling good branch prediction or aligning jump targets), and other
improvements on your code.

2. Constant propagation and folding. Implement constant propagation together with con-
stant folding and eliminating constant conditional branches.

3. Dead code elimination. Implement dead code elimination using the analysis described in
the lecture notes.

4. Eliminating register moves. Explore techniques for eliminating register moves such as
improved register allocation, copy propagation, register coalescing, and peephole optimiza-
tion. We suggest coalescing registers in a single pass after register allocation as suggested by
Pereira and Palsberg and the notes to Lecture 3.

5. Common subexpression elimination. Implement common subexpression elimination,
with or without type-based alias analysis to avoid redundant loads from memory.

6. Loop optimizations. Hoisting invariant computations out of loops and strength reduction
enabled by basic and derived induction variables are good targets for optimizations.

7. Tail call optimization. While not discussed in lecture, the tail call optimization was covered
in Assignment 3.

8. Inlining. While not discussed in lecture, inlining was also covered in Assignment 3. For
inlining, it will be important to develop a good heuristic for when to perform it.

9. Other optimizations. Feel free to add other optimizations as you see fit, although we
strongly recommend first completing basic ones before you go for more advanced ones.

If you have already implemented any of the optimizations, you may revisit and describe them,
empirically evaluate their impact, and perhaps improve them further.

Your compiler must take a new option, -On (dash capital-O), where -O0 means no optimizations,
-O1 performs some optimizations, and -O2 performs the most aggressive optimizations. Part of our
evaluation may be based on the performance improvements you achieve. At least -O0 and -O2

should be different. Keeping intermediate (and incompletely optimized) versions of your compiler
functional will be important so you can reliably assess the effects of your optimizations.

5 Regression Testing

As you are implementing optimizations, it is extremely important to carry out regression testing
to make sure your compiler remains correct. We will call it with the --safe and --unsafe flags at
various levels of optimization to ascertain its continued correctness.

2

http://www.cs.cmu.edu/~fp/courses/15411-f13/lectures/03-regalloc.pdf
http://www.cs.cmu.edu/~fp/courses/15411-f13/assignments/assignment3.pdf
http://www.cs.cmu.edu/~fp/courses/15411-f13/assignments/assignment3.pdf


6 Deliverables and Deadlines

For this project, you are required to hand in a complete working compiler for L4 that produces
correct target programs written in Intel x86-64 assembly language, and a description and assessment
of your optimizations. The compiler must accept the flags --unsafe, --safe (default), -On with
default n = 2. When we grade your work, we will use the gcc compiler to assemble and link the
code you generate into executables using the provided runtime environment on the lab machines.

Note that this time we will not just call the _c0_main function in the assembly file you generate,
but other, internal functions in order to obtain cycle counts that are as precise as possible. So it
is critical that your code follow the standard calling conventions and function naming conventions
from Labs 1–4.

Compiler

The sources for your compiler should be handed via Autolab as usual, and must contain documen-
tation that is up to date. Your last submission will also be tested for correctness. Remember that
optimizations are required to preserve memory safety. You may use any remaining late days for
the compiler.

Compilers are due 11:59pm on Saturday, Nov 16, 2013.

Project Report

The project report should be a PDF file of approximately 3–5 pages, and should also be handed in
on Autolab. Your report should describe the effect of --unsafe as well as your optimizations and
assess how well they worked in improving the code, over individual tests and the benchmark suite.

If you use algorithms that have not been covered in class, cite any relevant sources, and briefly
describe how they work. If the algorithms have been covered in class, cite the appropriate lecture
notes, and do not waste any space on describing the optimizations. The interactions of the opti-
mizations with each other and the effect of optimizations on the produced code should be given
adequate treatment.

Project reports are due on 11:59pm on Monday, Nov 18, 2013.
You may not use any late days for the paper. This means if you hand in the compiler

two days late, then the paper will be due on the same day.

3


	Introduction
	Preview of Deliverables
	Compilation to Unsafe Code
	Optimizations
	Regression Testing
	Deliverables and Deadlines

