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1 Introduction

We have previously (lecture 20) considered the problem of doing compilation “backwards” (i.e., extracting
a reasonable approximation of the original source from its compiled code). However, rather than analyzing
our dataflow, we will be going one level beyond, and analyzing our analyses of dataflow.

The ethics of code obfuscation, DRM, and the like is a complicated topic, and we will not discuss it here.
Regardless of one’s ethical stance on the topic of obscurity, it is important as an proponent to understand
the basic ideas behind implementing it, as an opponent to understand it well enough to defeat it, and as an
intellectual to learn from it.

As alluded to above, if not the largest than certainly the most controversial application of code obfuscation
is as a means to implement copy protection and Digital Rights Management Schemes (DRM). However, on
occasion obfuscation can arise more organically. Hand-written assembly, despite being frowned upon as a
software development process today, is still alarmingly prevalent within industry. Somewhat unfortunately,
the less understandable snippets tend to be the most resistant to replacement, since writing code that
performs the same function is difficult.

Finally, it is worth noting that these lecture notes are by no means the final word on obfuscation. Obfuscation
is dependent on the workings of the tools used for reverse engineering, and so as they change, so to will
the methods used for obfuscation. This lecture will in particular focus on defeating IDA Pro, objdump, and
gdb.

2 Disassembly

The two disassembly tools, whlie they to some degree do a very similar job (converting machine code directly
into assembly language) have very different philosophies about how one might do this. This is most likely
due to the vastly higher degree of sophistication present in IDA, and to the effort that the authors of IDA
make in order to defeat obfuscating compilers.

In a perfect world, disassembly is very similar. Much like an assembler can take every mnemonic to a single
sequence of bytes, using a relatively simile one-to-one mapping, a disassembler ought to be able to read the
sequence of bytes and decide which instructions map to those bytes. For example, ret maps to C3, so when
a disassembler notices an instruction beginning with C3, it should produce a ret instruction.

There are, however, a few problems that appear. First of all, in modern executable file formats, the .text
section that contains program code is also allowed to contain program data. While most program code is
easy to disassemble, as long as no effort has been made to make it difficult, program data is very unlikely to



disassemble to valid code - much less code that makes any sense. Therefore, modern disassemblers must be
able to differentiate code from data, even when the entire block is marked as code.

Here is where the differences between the tools mostly lie. IDA attempts to solve this problem; objdump
assumes your data is in the various data sections, and that .text is entirely made up of code. It should be
noted that while in general, IDA makes the correct choice, there are ways to trick it as well. In particular,
since the 00 00 bytes form a valid instruction (albeit add %al, (%eax)), IDA assumes that it is data. One
can use this to trivially trick objdump by placing data in the .text section.

Both tools assume that a single sequence of bytes will only be executed in exactly one way. This is a
wonderful efficiency gain for objdump in particular: rather than needing to do recursive-descent disassembly
and “pretend” to execute the program, objdump can just do a single, straight-line disassembly pass and be
done with it.

However, this causes a very significant issue the moment programs stop obeying this restriction. In particular,
consider the sequence of instructions:

push %rax

xor Y%rax, hrax
.byte 0x74
.byte 0x01
.byte 0x0f

pop %rax

mov $r, ‘%rax

Given this code, gcc happily produces the following sequence of bytes:
50 48 31 cO 74 01 Of 58 48 c7 cO 03 00 00 00
We can then run objdump on these bytes, and notice that the following is produced:

Disassembly of section .text:

0000000000000000 <.text>

0: 50 push Yrax

1: 48 31 cO xor ‘hrax, %rax

4: 74 01 je 0x07

6: O0f 58 48 c7 addps -0x39(%rax), %xmml
a cO0 03 00 rolb $0x0, (%rbx)

What has happened here is this: the bytes 74 01 lead to a jump that skips the following byte (here, 0f),
which happens to be the first byte of all two-byte opcodes. The presence of the 0f, however, causes objdump
to decide that the bytes following the jump must be a mapping From an instruction with a two-byte opcode
(in this case, addps, a SIMD instruction). As the misalignment constinues (the 48 c7 bytes are the first two
bytes of our mov instruction from the original assembly, but have been “eaten up” by the SIMD instruction),
we continue to produce nonsensical assembly afterwards.

Now, a human reading the assembly can notice by the first three instructions that something fishy is going
on, but unless they can read machine code, they will still have to modify the 0f byte into something more
like 90 in order to read correct disassembly.

One might expect IDA, which does not perform straight-line disassembly but rather uses a recursive-descent
algorithm, to not be fooled by this trick. HOwever, IDA’s recursive descent follows branch-not-taken before
it follows branch-taken, and it also assumes that each sequence of bytes can only be disassembled one way.
Therefore, when it follows branch-taken (which would produce correct output!) it notices that the target of
the jump is marked as disassembled already and hence does not bothered to disassemble it correctly.



It should be noted, however, that the processor has no issues executing this code. Since xor %rax, %rax
will always cause the jump to be triggered, furthermore, it does not execute the potentially fatal SIMD
instruction (which dereferences —0x39 (%rax), which is probably not a good place).

3 Anti-Analysis

The anti-analysis techniques described here are mostly targeted at IDA Pro, though one could probably also
adapt them to target CMU’s BAP systemﬂ

IDA’s analysis capabilities are formidable. With 32-bit code, in fact, they are often (though not always) able
to generate C code that preserves the semantics of the original code that was compiled. While the 64-bit
version of IDA does not yet have decompilation support, it does have a variety of other analysis tricks up
its sleeve.

One thing in particular that is exceedingly useful to reverse engineer is IDA’s capacity to recognize function
boundaries. However, different compilers tend to produce vastly different function boundary code!

In 32-bit code, the differences are relatively small. In particular, many Microsoft compilers produce code
that follows the stdcall calling convention rather than the more standard cdecl convention, which causes
end-of-function code to be more complicated. Similarly, the fastcall convention is different depending on
platform and compiler.

In 64-bit code, however, there is a significant difference between code produced by compilers that follow
the Microsoft calling conventions and the code produced by compilers that follow the System V calling
conventions (such as gcc, clang, and others).

In order to support all of these different conventions, as users of IDA expect it to, IDA uses a variety of
heuristics to decide where functions begin and end. One can exploit the characteristics of these heuristics in
order to cause IDA to believe that functions end before they do, or simply refuse to believe that they end at
all.

Other analyses performed by IDA involve stack variables. In order to confuse IDA here, one can temporarily
confuse the stack pointer. As IDA depends on symbolic execution of the code being analyzed, and expects
the stack pointer to remain at “sensible” values, this causes the analysis steps to fail entirely. It is possible to
produce 32-bit code that fails entirely to be recompiled by IDA, even if the disassembly step succeeds.

Confusing the stack pointer and IDA’s function boundary detection can be done by faking a sequence of
instructions that are similar to those done on return From a function, and transforming the “normal” return
sequence.

For example, the fake sequence:

push %rcx
push %rbx
push Yrdx
.byte 0xe8
.byte 0x00
.byte 0x00
.byte 0x00
.byte 0x00
pop %rdx
add $08, %rdx
push %rdx

IMore information on BAP can be found at http://bap.ece.cmu.edu/
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ret

.byte 0x0f
pop %rdx
pop %rbx
pop %rcx

These bytes e8 00 00 00 decode to call $+0, or simply “push %rip” (were such a thing allowed). This
confuses IDA’s stack pointer, since it resets the “relative” value of %rsp (which is all it keeps track of) upon
executing a call instruction. Following it up with a pop causes the sign of the stack pointer adjustment to
be something IDA fails to understand.

Further, the presence of the ret instruction so soon after a pop instruction causes some versions of IDA to
believe that this is the end of a function. Unfortunately (or fortunately, depending on your perspective),
there does not seem to be such a sequence for all versions.

Afterward, one can modify the real return sequence very slightly. Rather than ending functions with a ret
instruction, one could end them with, say:

pop %rlb
pop %rid
pop %ri3
pop %ri2
pop %rbx
pop %ril
pop %r10
pop %rdi
jmp *Yrdi
IDA attempts to decide what it believes the indirect jump is, and often labels the function a “chunk” rather

than a full function and does not list it in the functions list.

To understand what this means, some understanding of IDA’s internals is required. The way the function
detection works appears to be as follows:

1. Notice a standard function-beginning sequence.

2. “Evaluate” the code from the start (except backwards edges) until every piece of control flow reaches
a function end sequence.

3. If the pieces of the function are spread across memory, and don’t end in return statements, label them
as “chunks”.

If one can cause IDA to recognize a given piece of code as a chunk that has no corresponding function, then
it analyzes it and promptly tosses out its analysis.

4 Anti-Debugging

Often, when a reverse engineer cannot figure out the details of the program statically (either due to massive
program scale, unreadable assembly, or any of a variety of other factors), he or she will attempt to do
so dynamically, observing the program’s behavior as it runs. Debuggers such as gdb are a critical part
of this effort. Therefore, any full anti-reverse-engineering effort would need to have some anti-debugging
component.

The primary method for anti-debugging is to abuse the fact that each program can only be debugged by
one debugger. To use this, we inserted a ptrace() call into the program that causes the program’s parent



to attach itself to it as a debugger. If the program already has a debugger attached, this call fails and the
program segfaults.

This is perhaps the simplest anti-debugging mechanism, and can be countered by a simple modification of the
binary, by very careful use of the debugger, or by interposing the ptrace() call. However, in combination
with anti-disassembly it is generally enough to delay reverse engineers for a significant amount of time,
especially since the ptrace() call can be well-hidden.

A more sophisticated trick is as follows:

1. The program begins, and before calling main(), calls a constructor function c(). The list of such
functions is held in the ctors section, and can be user-controlled.

2. This constructor forks the program. One fork is marked as the child, and the other is marked as the
parent.

3. The parent ptrace()s the child, and the child ptrace()s the parent.

4. Each inserts a critical structure into the memory of the other, or modifies the other’s code, or alters the
main() function to be a no-op, while inserting the address of the “real” main into the dtors section
to be called at exit.

5. One of the two runs the program as “normal”.

This trick (circular debugging) is very difficult to get around. It is, however, also very difficult to implement
at the compiler level. In general, mitigating this anti-debugging technique involves writing a custom loader
for the target program, and loading the structure into memory oneself. In general, understanding what the
structure is entails a full static analysis of the original program, effectively defeating the entire purpose of
debugging in the first place.

The last technique is trivial both in implementation and in mitigation: forced breakpoints. The int 3
instruction, on most platforms, forces a breakpoint. Inserting int 3 in various locations in the program would
cause the reverse engineer to need to manually deal with vastly more breakpoints than desired (especially
in tight loops) and hence hinder his or her debugging efforts. However, simply replacing all instances of
that instruction with a nop instruction trivially defeats this technique, so it is mostly just a nuisance to any
reverse engineer.

5 Other techniques

(This section was not reached in lecture since we did a demo.)

5.1 SSA

Obfuscation interacts quite well with SSA (and basic block analysis), since one can then use it to do IR-level
hiding of information. To do this, one could add extra unnecessary control flow nodes, without losing too
much in performance. Further, given the basic block information, one can then reorder blocks in the binary,
making reading disassembler output an exercise in scrolling.

5.2 Packers

A technique that has become more prevalent in recent years is the use of packers. The general idea here is
to keep a compressed or encrypted version of the binary on the disk (“packed”), as well as a small loader
stub which can then decrypt/decompress (“unpack”) the rest of the binary in memory. Advanced packers



can even unpack individual functions or basic blocks one at a time, and then re-pack them when they are no
longer running. This completely defeats static analysis, as the bytes that make up the target program are
quite simply not decipherable until they are unpacked.

Packing is generally defeated by dumping the contents of memory at runtime, though the specific implemen-
tation of this technique can make memory dumps much harder. Packing has perhaps the highest return of
any anti-reverse-engineering technique, but is itself very time-consuming to write.

5.3 Calling conventions

Per-function calling conventions are the extreme of making human analysis difficult, as then the human
would need to keep track of which function takes which convention. From an implementation perspective,
however, it requires quite a lot of information be passed around at compile time and instruction selection
time to make it workable, and so is less viable than some other techniques.

5.4 Program bugs

The use of bugs in objdump and IDA can make them entirely useless. While writing our obfuscating com-
piler, for instance, we successfully produced a binary that caused objdump to segfault upon attempted
disassembly. (It’s not exploitable as far as we could tell.) However, such transformations can be unreliable
in implementation, since they require the construction of decidedly odd corner cases.

6 Want more?

The biggest problem with writing obfuscating compilers is debugging the compilers themselves. In effect,
the author is attempting to shoot himself or herself in the foot by preventing debugging while demanding
correctness, since determining why correctness was not maintained requires debugging. In effect, it requires
the author to mitigate their own anti-reverse-engineering transformations in order to reverse-engineer their
own program.

Finally, we should mention that if reversing and code obfuscation are topics you find interesting, the PPP
Security Research Group and Hacking Team may be for you. For more information, visit our webiste
http://pwning.net, sign up for our mailing list, or join our IRC channel |irc://freenode.net/#pwning.
Our faculty advisor is Professor David Brumley; more information on his projects can be found at his website
https://users.ece.cmu.edu/~dbrumley/.
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