
Lecture Notes on
Polymorphism

15-411: Compiler Design
Frank Pfenning

Lecture 24
November 14, 2013

1 Introduction

Polymorphism in programming languages refers to the possibility that a function
or data structure can accommodate data of different types. There are two principal
forms of polymorphism: ad hoc polymorphism and parametric polymorphism. Ad hoc
polymorphism allows a function to compute differently, based on the type of the
argument. Parametric polymorphism means that a function behaves uniformly
across the various types [Rey74].

In C0, the equality == and disequality != operators are ad hoc polymorphic:
they can be applied to small types (int, bool, τ∗, τ [], and also char, which we don’t
have in L4), and they behave differently at different types (32 bit vs 64 bit compar-
isons). A common example from other languages are arithmetic operators so that
e1 + e2 could be addition of integers or floating point numbers or even concate-
nation of strings. Type checking should resolve the ambiguities and translate the
expression to the correct internal form.

The language extension of void∗ we discussed in Assignment 4 is a (somewhat
borderline) example of parametric polymorphism, as long as we do not add a con-
struct hastype(τ, e) or eqtype(e1, e2) into the language and as long as the execution
does not raise a dynamic tag exception. It should therefore be considered some-
what borderline parametric, since implementations must treat it uniformly but a
dynamic tag error depends on the run-time type of a polymorphic value.

Generally, whether polymorphism is parametric depends on all the details of
the language definition. The importance of parametricity for data abstraction in
language implementations cannot be overstated. Failure of parametricity often
means failure of data abstraction: an implementation of a generic data structure
cannot necessarily be replaced by another one (even if it is correct!) without break-
ing a client.

LECTURE NOTES NOVEMBER 14, 2013

http://www.cs.cmu.edu/~fp/courses/15411-f13/assignments/assignment4.pdf

Polymorphism L24.2

2 Parametric Polymorphism

The prototypical example of a parametric function is the identity function, λx. x :
α→ α. In C0, we might write this as

a id(a x) {

return x;

}

which interprets the undefined type name a as a type variable whose scope is
the current function. The projection function, which ignores its second argument,
would be

a proj(a x, b y) {

return x;

}

with both a and b as type variables. From this we extract an abstract form of defi-
nition

id : ∀a. (a)→ a
proj : ∀a, b. (a, b)→ a

When type-checking the body of a function, the free variables in the function defi-
nition are treated like new basic types. In particular, they are not subject to instan-
tiation, since in the end the function has to work for all types. To account for this
we allow a new form of declaration a : type in our typecontext Γ.

When type-checking the use of a polymorphic function, we can instantiated the
type variables to other types. For example,

if (id(true)) return id(id(4));

should be well-typed. In order to formalize this we will need a substitution θ for the
(quantified) type variables from the definition of a function, using concrete types
and other type variables declared in the context. We write

Γ ` θ : (a1, . . . , ak)

if θ substitutes types that are well-formed in Γ for the type variables a1, . . . , ak.
Furthermore, we write θ(τ) for the result of applying the substitution θ to the type
τ .

Our typing rule then shapes up as follows:

f : ∀a1, . . . , ak.(τ1, . . . , τn)→ τ
Γ ` θ : (a1, . . . , ak)
Γ ` e1 : θ(τ1)
· · ·
Γ ` en : θ(τn)

Γ ` f(e1, . . . , en) : θ(τ)

LECTURE NOTES NOVEMBER 14, 2013

Polymorphism L24.3

Note that there is a single substitution θ, so the type variables a1, . . . , an must be
instantiated consistently for all arguments and the result. For example:

id : ∀a. (a)→ a
· ` (int/a) : (a)
· ` 4 : int

· ` id(4) : int

where 4 : int arises from 4 : (int/a)(a).

3 Generic Data Structures

In a first-order imperative language, the main use of polymorphism is for generic
data structures. For example, we may want to have a stack with elements of arbi-
trary type a.

struct list_node<a> {

a data;

struct list_node<a>* next;

};

typedef struct list_node<a> list<a>;

During compilation, we would like to create parametric code, which works the
same independently of the type a. If we restrict type variables to be instantiated to
small types then we can allocate 8 bytes for a polymorphic field of a struct, which
should always be enough room. During allocation, the polymorphic field will be
initialized with 0, which by design represents the default value of all types.

In other languages we may box polymorphic data (replace them by a reference
to the actual data), or monomorphise the whole program and compile multiple ver-
sions of a function.

The type parameter of the structure is indicated inside the angle brackets. Func-
tions manipulating the structure would be correspondingly polymorphic. For ex-
ample:

list<a>* cons(list<a>* p, a elem) {

list<a>* q = alloc(list<a>);

q->data = elem;

q->next = p;

return q;

}

LECTURE NOTES NOVEMBER 14, 2013

Polymorphism L24.4

4 Pairs

We can easily define a product type, which would usually be written as a ∗ b in a
functional language.

struct prod<a,b> {

a fst;

b snd;

};

typedef struct prod<a,b>* prod<a,b>;

a fst(prod<a,b> p) {

return p->fst;

}

b snd(prod<a,b> p) {

return p->snd;

}

prod<a,b> pair(a x, b y) {

prod<a,b> p = alloc(struct prod<a,b>);

p->fst = x;

p->snd = y;

return p;

}

5 Function Pointers

Polymorphism in data structures is severely handicapped unless we can store func-
tion pointers. For example, a hash table may be parameterized by a type key for
keys and a type a for the elements stored in the table. We store in the header func-
tions to hash a key value, to compare keys, and extracting a key from an element.

struct ht_header<key,a> {

int size; /* size >= 0 */

int capacity; /* capacity > 0 */

list<a*>*[] table; /* \length(table) == capacity */

int (*hash)(key k); /* hash function */

bool (*key_equal)(key k1, key k2); /* key comparison */

key (*elem_key)(a elem); /* extracting key from element */

};

LECTURE NOTES NOVEMBER 14, 2013

Polymorphism L24.5

typedef struct ht_header<key,a> ht<key,a>;

a* ht_lookup(ht<key,a> H, key k)

//@requires is_ht(H);

{

int i = (*H->hash)(k);

list<a*>* p = H->table[i];

while (p != NULL) {

//@assert p->data != NULL;

if ((*H->key_equal)((*H->elem_key)(*p->data), k))

return p->data;

else

p = p->next;

}

/* not in list */

return NULL;

}

6 Interactions With Other Language Features

The interactions between parametric and ad hoc polymorphism are often tricky. In
C0 with parametric polymorphism, the main issue arises with equality. If we have
e1 == e2 where e1 and e2 are of type a? If a stands for a small type, this might
be feasible, but there is still a difference between 32-bit and 64-bit comparisons.
Alternative, we could simply rule this out. This would suggest itself in particular
in C0 with a type string, which is not subject to equality testing.

A general approach to interactions between ad hoc and parametric polymor-
phism are type classes as they are used in Haskell. In lecture, students proposed
some extensions of the above so that polymorphism can be limited to type classes.
Since I did not take any pictures of the blackboard at the time, these extensions are
lost to posterity unless someone sends me some suggestions.

7 Type Inference

Often associated with parametric polymorphism is the idea of type inference. For the
polymorphic part of the language, this actually presents rather few problems, since
the scope of type variables is naturally delineated by function definitions. How-
ever, in C0 there is a problem with field selection, e.f . Since fields are global and
can freely be shared between different structs, it will be difficult to disambiguate
uses of the field names f and therefore the type of e.

LECTURE NOTES NOVEMBER 14, 2013

Polymorphism L24.6

8 Type Conversions and Coherence

Ad hoc polymorphism is often associated with (implicit) conversions between types.
For example, in an expression 3 + x where x : float we might promote the integer
3 to a floating point number, since the other summand is a floating point number.
There is a complicated set of rules in the definition of C [KR88] regarding such
conversions between types, including integral types of varying sizes, pointers, and
other numeric types like float or double.

Inside a compiler, such promotions should be turned into explicit operators, for
example itof(3) + x, where itof converts an integer to its floating point representa-
tion.

The problem with such implicit conversion is that it can easily lead to errors.
The more complicated the rules in the language definition, the more likely it is
to lead to errors which are often hard to find. Particularly pernicious are error
arising from truncation of wider types to narrower ones, since they can remain un-
detected for a long time on smaller inputs. A language satisfies coherence if various
legal ways of inserting type conversions always leads to the same answer [Rey91].
In such language the meaning of expressions is less dependent on arcane details.
Nevertheless, overloading and implicit conversions ought to be viewed with sus-
picion.

References

[KR88] Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language.
Prentice Hall, second edition, 1988.

[Rey74] John C. Reynolds. Towards a theory of type structure. In B. Robinet, editor,
Programming Symposium, volume 19 of Lecture Notes in Computer Science,
pages 408–425, Berlin, 1974. Springer-Verlag.

[Rey91] John C. Reynolds. The coherence of languages with intersection types. In
Takayasu Ito and Albert R. Meyer, editors, Theoretical Aspects of Computer
Software, volume 526 of Lecture Notes in Computer Science, pages 675–700,
Berlin, 1991. Springer-Verlag.

LECTURE NOTES NOVEMBER 14, 2013

	Introduction
	Parametric Polymorphism
	Generic Data Structures
	Pairs
	Function Pointers
	Interactions With Other Language Features
	Type Inference
	Type Conversions and Coherence

