
Lecture Notes on
Dynamic Semantics

15-411: Compiler Design
Frank Pfenning

Lecture 13
October 8, 2013

1 Introduction

In the previous lecture we have specified the static semantics of a small imperative
language. In this lecture we proceed to discuss its dynamic semantics, that is, how
programs execute. The relationship between the dynamic semantics for a language
and what a compiler actually implements is usually much less direct than for the
static semantics. That’s because a compiler doesn’t actually run the program. In-
stead, it translates it from some source language to a target language, and then the
program in the target language is actually executed.

In our context, the purpose of writing down the dynamic semantics is therefore
primarily to precisely specify how programs are supposed to execute. Just the
exercise of writing this down formally should help us think about the special cases
and make sure our implementation is correct.

Another important purpose is to verify properties of the language itself in a
formal (mathematical) way. Much of the theory of programming languages is con-
cerned with just that and therefore requires an operational semantics. A third pur-
pose is to actually prove that a compiler is correct. That requires at least two opera-
tional specifications: one for the source language and one for the target language.
To date, this still requires a major research effort (and is, in any case, out of the
scope of this course).

2 Evaluating Expressions

When trying to specify the operational semantics of a programming language,
there are a bewildering array of choices regarding the style of presentation. Some
choices are natural semantics, structural operational semantics, abstract machines,

LECTURE NOTES OCTOBER 8, 2013

Dynamic Semantics L13.2

substructural operational semantics, and many more. Having developed substruc-
tural operational semantics (SSOS) myself, I have a natural bias towards that style
of specification. It has the great virtue that in many cases one can extend the lan-
guage with new constructs without having to rewrite the rules already in place.
However, it requires some machinery, namely substructural logic, which is a little
more extensive than what I would like to introduce in this course. So instead I am
using natural semantics, despite some of its shortcomings.

In natural semantics, which is a form of so-called big-step operational semantics,
we relate an expression e directly to its value v. So the basic judgment might be
written eval(e, v). While accurate, this can be a bit lengthy, so we write e ↓ v instead.
Here, e are expression in our (elaborated) abstract syntax, and v are 32 bit integers,
interpreted in two’s complement representation.

We begin with straightforward rule. The rules of natural semantics are intended
to be read bottom-up, from the conclusion to the premise.

e1 ↓ v1 e2 ↓ v2 v = v1 + v2 (mod 232)

e1 + e2 ↓ v

We read this as follows:

To evaluate e1 + e2 we evaluate e1 to some value v1, then e2 to some value v2
and return the sum v1 + v2 in arithmetic modulo 232.

We can continue along this line, be we get stuck for variables. Where do their
values come from? We need to add an environment η that maps variables to their
values. We write

η ::= · | η, x 7→ v

and η[x 7→ v] for either adding x 7→ v to η or overwriting the current value of x by
v (if η(x) is already defined). The rule above now carries along η, and the case of a
variable looks it up.

η ` e1 ↓ v1 η ` e2 ↓ v2 v = v1 + v2 (mod 232)

η ` e1 + e2 ↓ v

η(x) = v

η ` x ↓ v

The next problem is posed by operations that may raise an exception. We write
η ` e ↑ exn if e raises the exception exn . We use a only a few predefined exceptions,
and the language provides no way to handle such exceptions, greatly simplifying
its semantics. We obtain four rules to specify the behavior of division. We write

LECTURE NOTES OCTOBER 8, 2013

Dynamic Semantics L13.3

trunc(x) for truncation of x towards 0.

e1 ↓ v1 e2 ↓ v2
−231 ≤ v1/v2 < 231

v = trunc(v1/v2)

e1 / e2 ↓ v

e1 ↓ v1 e2 ↓ v2
v2 = 0
or (v1 = −231 and v2 = −1)

e1 / e2 ↑ arith

e1 ↑ exn
e1 / e2 ↑ exn

e1 ↓ v1 e2 ↑ exn
e1 / e2 ↑ exn

The last two rules follow from the general convention that we perform left-to-
right evaluation of subexpressions. This leads to an unfortunate proliferation of
rules. We follow the convention of annotating a rule with (+LR) to indicate that we
have omitted additional versions of the rule which can be obtained by replacing
premises that converge (↓ v) by premises that raise an exception (↑ exn), from left
to right, and propagating the exception in the conclusion.

The remaining kind of expressions are fairly straightforward, but we have to
remember that some boolean operators shirtcircuit evaluation. We also fix the in-
terpretation of true as 0 and false as 1.

η ` false ↓ 0 η ` true ↓ 1

η ` e1 ↓ 0

η ` e1 && e2 ↓ 0

η ` e1 ↓ 1 η ` e2 ↓ v2
η ` e1 && e2 ↓ v2

(+LR)

The (+LR) annotation on the second rule means that the following two rules are
implied.

η ` e1 ↑ exn
η ` e1 && e2 ↑ exn

η ` e1 ↓ 1 η ` e2 ↑ exn
η ` e1 && e2 ↑ exn

3 Relating Static and Dynamic Semantics

The judgments in the static and dynamic semantics are designed to be closely re-
lated. We will not prove any of these relationships, but they might help us consider
the correctness and completeness of our rules. Here are some of the relationships
for expressions.

Γ ` e : τ

: :

η ` e ↓ v

This picture expresses that the environment η should match the context Γ and that,
furthermore, v should have type τ . We say that η matches Γ (η : Γ) if for every

LECTURE NOTES OCTOBER 8, 2013

Dynamic Semantics L13.4

declaration Γ, x:τ we have a definition η(x) = v with v : τ . The typing for values
here is a bit degenerate, but it should stipulate, for example, that only 0 : bool and
1 : bool. Note that values are typed without an environment because they are just
32 bit words and cannot contain variables.

The above relationship does not quite hold in our semantics, because not all
variables in Γ may have been initialized. But we will have checked statically that

δ ` e

where δ ⊆ dom(Γ). So we can refine the above by restricting Γ to the defined
variables in δ.

δ ` e

Γ|δ ` e : τ

: :

η ` e ↓ v

Going back to the earlier rules, we can see the significance of these relationships.
For example, we see that in the rules for variables, we can never encounter an
uninitialized variable. In the rules for logical conjunction, we see that the two cases
for the value of e1 in e1 && e2, namely 0 and 1, capture all possibilities because the
value v1 such that η ` e1 ↓ v1 must be of type bool.

4 Executing Statements

Executing statements in L3, the fragment of C0 we have considered so far, can
either complete normally, return from the current function with a return statement,
or raise an exception.

• η ` s → η′: executing s in environment e completes normally with environ-
ment η′.

• η ` s ↓ [v]: executing s in environment η does not complete normally, but
instead returns value v.

• η ` s ↑ exn : executing s in environment η raises exception exn .

We start with some simple cases:

η ` nop→ η

η ` s1 → η1 η1 ` s2 −→ η2

η ` seq(s1, s2)→ η2
(+LR)

LECTURE NOTES OCTOBER 8, 2013

Dynamic Semantics L13.5

The second rule highlights that sequences of statements are executed left to right.
We extend our convention regarding the propogation of exception, where any ex-
ception by s1 is propagated, and an exception in s2 is propagated if s1 completes
normally. So the annotation (+LR) implies the following two rules:

η ` s1 ↑ exn

η ` seq(s1, s2) ↑ exn

η ` s1 → η1 η1 ` s2 ↑ exn

η ` seq(s1, s2) ↑ exn

Because s1 or s2 may also execute a return statement, we also need the following
additional rules:

η ` s1 ↓ [v]

η ` seq(s1, s2) ↓ [v]

η ` s1 → η1 η1 ` s2 ↓ [v]

η ` seq(s1, s2) ↓ [v]

How do these judgments line up with our static semantics?

Γ|δ ` s : [τ]

δ ` s ⇒ δ′

: :

η ` s → η′

The diagram is trying to express that if η matches Γ|δ then η′ matches Γ|δ′ . In other
words, if s completes normally then it will define exactly those variables that the
static semantics claimed it must, namely those in δ′. Moreover, all the values have
the right type.

For return values we have a related diagram:

δ ` s ⇒ δ′

Γ|δ ` s : [τ]

: :

η ` s ↓ [v]

That is, if s returns a value v, then that must have the type τ . The rule on the right
clearly should satisfy this.

η ` e ↓ v

η ` return(e) ↓ [v]

η ` e ↑ exn

η ` return(e) ↑ exn

Assignment straightforwardly updates the environment, propagating excep-
tions.

η ` e ↓ v

η ` assign(x, e)→ η[x 7→ v]
(+LR)

LECTURE NOTES OCTOBER 8, 2013

Dynamic Semantics L13.6

For conditionals, we evaluate only the relevant branch.

η ` e ↓ 1 η ` s1 → η′

η ` if(e, s1, s2)→ η′
(+LR)

η ` e ↓ 1 η ` s1 ↓ [v]

η ` if(e, s1, s2) ↓ [v]

η ` e ↓ 0 η ` s2 → η′

η ` if(e, s1, s2)→ η′
(+LR)

η ` e ↓ 0 η ` s2 ↓ [v]

η ` if(e, s1, s2) ↓ [v]

Loops are somewhat more interesting. If the loop guard is false, we exit the
loop. If it is true, we execute the loop body once (obtaining a new environment η′)
and then repeat in the new environment η′.

η ` e ↓ 0

η ` while(e, s)→ η
(+LR)

η ` e ↓ 1 η ` s→ η′ η′ ` while(e, s)→ η′′

η ` while(e, s)→ η′′
(+LR)

We omit the additional, obvious rules for dealing with possible returns.
Loops bring up the question of nontermination. Natural semantics is not par-

ticularly well-suited to reflect on nontermination. If, say, an expression e does not
terminate in environment η, we cannot find any value v such that η ` e ↓ v can be
proved, nor is there an exception exn such that η ` e ↑ exn . But nontermination is a
bit stronger than that, because, intuitively, we can always continue with our proof
construction but never complete it. In the case of the while loop, the third premise
of the second rule would again apply the same rule, with again the same while loop
in the third premise, and so on without ever completing.

Declarations are not particularly difficult; we just have to be careful to track
the scopes of variables correctly during elaboration so that there are no surprises
during execution.

η ` s→ η′

η ` decl(x, τ, s)→ η′ \ [x 7→]
(+LR)

Here we just remove whatever definition might have been given to x during the
execution of s.

5 Function Calls

Finally, for this lecture, we come to another connection between statements and
expressions: function calls. We stack th premises on top of each other so the rule

LECTURE NOTES OCTOBER 8, 2013

Dynamic Semantics L13.7

doesn’t become too wide.

η ` e1 ↓ v1
· · ·
η ` en ↓ vn
f(x1, . . . , xn) = s
x1 7→ v1, . . . , xn 7→ vn ` s ↓ [v]

η ` f(e1, . . . , en) ↓ v
(+LR)

Here, η is entirely ignored in the body of f (called s), because s only has access to
the function parameters x1, . . . , xn. If all goes well, we know that s must raise an
exception or return a value, it cannot complete normally. That’s because we have
checked in the static semantics that there is a return statement along each control
flow path through s. We can provide an additional version of this rule in case we
have a function not returning a value (void), or we can elaborate void into return of
a distinguished value, say, 0.

Recall that according to our convention, the function call raises an exception if
e1 does, or if e1 returns a value and e2 raises an exception, etc. Finally, any exception
from s is passed on.

LECTURE NOTES OCTOBER 8, 2013

	Introduction
	Evaluating Expressions
	Relating Static and Dynamic Semantics
	Executing Statements
	Function Calls

