
Lecture Notes on
Intermediate Representation

15-411: Compiler Design
Frank Pfenning∗

Lecture 10
September 26, 2013

1 Introduction

In this lecture we discuss the “middle end” of the compiler. After the source has
been parsed and elaborated we obtain an abstract syntax tree, on which we carry
out various static analyses to see if the program is well-formed. In the L2 language,
this consists of type-checking (which is rather straightforward), checking that every
finite control flow path ends in a return statement, that every variable is initialized
before its use along every control flow path. For more specific information you
may refer to the Lab 2 specification.

After we have constructed and checked the abstract syntax tree, we transform
the program through several forms of intermediate representation on the way to
abstract symbolic assembly and finally actual x86-64 assembly form. How many
intermediate representations and their precise form depends on the context: the
complexity and form of the language, to what extent the compiler is engineered
to be retargetable to different machine architectures, and what kinds of optimiza-
tions are important for the implementation. Some of the most well-understood
intermediate forms are intermediate representation trees (IR trees), static single-
assignment form (SSA), quads and triples. Quads (that is, three-address instruc-
tions) and triples (two-address instructions) are closer to the back end of the com-
piler and you will probably want to use one of them, maybe both. In this lecture
we focus on IR trees.

∗with contributions by André Platzer

LECTURE NOTES SEPTEMBER 26, 2013

http://www.cs.cmu.edu/~fp/courses/15411-f13/misc/lab2.pdf

Intermediate Representation L10.2

2 Abstract Syntax Trees

We describe abstract syntax trees in a BNF form (Backus-Naur Form) which was
originally designed for describing grammars. An abstract syntax tree is the output
of parsing and is formed by removing immaterial information from the parse tree
(e.g., tokens that are not important in the tree structure) and transforming into a
more canonical form. Here we use BNF to describe the recursive structure of the
abstract syntax trees.

Expressions e ::= n | x | e1 ⊕ e2 | e1 � e2 | f(e1, . . . , en)
| e1 ? e2 | !e | e1 && e2 | e1 || e2

Statements s ::= assign(x, e) | if(e, s1, s2) | while(e, s)
| return(e) | nop | seq(s1, s2)

We use n for constants, x for variables, ⊕ for effect-free operators, � for poten-
tially effectful operators (such as division, which could raise an exception), ’?’ for
comparison operators returning a boolean, !, &&, and || for logical negation, con-
junction, and disjunction, respectively. The latter have the meaning as in C, always
returning either 0 or 1, and short-circuiting evaluation if the left-hand side is false
(for &&) or true (for ||).

3 IR Trees

In the translation to IR trees we want to achieve several goals. One is to isolate po-
tentially effectful expressions, making their order of execution explicit. This sim-
plifies instruction selection and also means that the remaining pure expressions
can be optimized much more effectively. Another goal is to make the control flow
explicit in the form of conditional or unconditional branches, which is closer to
the assembly language target and allows us to apply standard program analyses
based on an explicit control flow graph. The treatment in the textbook achieves
this [App98, Chapters 7 and 8] but it does so in a somewhat complicated manner
using tree transformations that would not be motivated for our language.

We describe the IR through pure expressions p and commands c. Programs r are
just sequences of commands; typically these would be the bodies of function def-
initions. An empty sequence of commands is denoted by ’·’, and we write r1 ; r2
for the concatenation of two sequences of commands.

LECTURE NOTES SEPTEMBER 26, 2013

Intermediate Representation L10.3

Pure Expressions p ::= n | x | p1 ⊕ p2

Commands c ::= x← p
| x← p1 � p2
| x← f(p1, . . . , pn)
| if (p1 ? p2) goto l
| goto l
| l :
| return(p)

Programs r ::= c1 ; . . . ; cn

Pure expressions are a subset of all expressions that do not have any side ef-
fects. We choose an IR tree representation in which potentially effectful operations
and function calls can only appear at the top-level of assignments. The logical op-
erators are no longer present and must be eliminated in the translation in favor
of conditionals. These transformations help optimizations and analysis. Function
calls only take pure arguments, which guarantees the left-to-right evaluation order
prescribed in the C0 language semantics. Since function calls may have effects, we
also lift function calls to the command level rather than embedding them inside
expression evaluation.

4 Translating Expressions

The first idea may be to translate abstract syntax expressions to pure expressions,
but this does not quite work because potentially effectful expressions have to be
turned into commands, and commands are not permitted inside pure expressions.
Returning just a command, or sequence of commands, is also insufficient because
we somehow need to refer to the result of the translation as a pure expression so
we can use it, for example, in a conditional jump or return command.

A solution is to translate from an expression e to a pair consisting of a sequence
of instructions r and a pure expression p. After executing r, the value of p will the
value of e (assuming the computation does not abort). We write

tr(e) = 〈ě, ê〉

where ě is a sequence of commands r that we need to write down to compute the
effects of e and ê is a pure expression p that we can use to compute the value of e
back up. Here are the first three clauses in the definition of tr(e):

tr(n) = 〈·, n〉
tr(x) = 〈·, x〉
tr(e1 ⊕ e2) = 〈(ě1 ; ě2), ê1 ⊕ ê2〉

LECTURE NOTES SEPTEMBER 26, 2013

Intermediate Representation L10.4

Constants and variables translate to themselves. If we have a pure operation e1⊕e2
it is possible that the subexpressions have effects, so we concatenate the command
sequences for these to expressions ě1 and ě2. Now ê1 and ê2 are pure expressions
referring to the values of e1 and e2, respectively, so we can combine them with a
pure operation to get a pure expression representing the result.

We can see that the translation of any pure expression p yields an empty se-
quence of commands followed by the same pure expression p, that is, tr(p) = 〈·, p〉.
Effectful operations and function calls require us to introduce some commands and
a fresh temporary variable to refer to the value resulting from the operation or call.

tr(e1 � e2) = 〈(ě1 ; ě2 ; t← ê1 � ê2), t〉 (t new)
tr(f(e1, . . . , en)) = 〈(ě1 ; . . . ; ěn ; t← f(ê1, . . . , ên)), t〉 (t new)

We postpone the translation of boolean expressions e1 ? e2, !e, e1 && e2 and
e1 || e2 to Section 6.

5 Translating Statements

Translating statements is in some ways simpler, because we only need to return a
sequence of instructions. It is slightly more complicated in other ways, since we
have to manage control flow via jumps and conditional branches. So the statement
translation takes three arguments: the statement to translate, and two optional la-
bels. We elide these labels for simplicity: they are absent on the top-level and
passed down in recursive calls and change when entering a while loop. We write
tr(s) = š, where š is a sequence of commands r.

Assigments and conditionals are simple, given the translation of expression
from the previous section, as are return, nop and seq.

tr(assign(x, e)) = ě ; x← ê

tr(return(e)) = ě ; return(ê)

tr(nop) = ·

tr(seq(s1, s2)) = š1 ; š2

Conditionals require labels and jumps. Below is a first attempt We combine
labels with the following statement (where there is one) to make it easier to read.

tr(if(e, s1, s2)) = ě ;
if (ê == 0) goto l2 ;

l1 : š1 ;
goto l3 ;

l2 : š2
l3 : (l1, l2, l3 new)

LECTURE NOTES SEPTEMBER 26, 2013

Intermediate Representation L10.5

We can unify the presentation a bit more by inserting a redundant jump (assuming
it will be optimized away late in the compilation) and combining a few commands
involving control on the same line.

tr(if(e, s1, s2)) = ě ;
if (ê == 0) goto l2 ; goto l1 ;

l1 : š1 ; goto l3 ;
l2 : š2 ; goto l3 ;
l3 : (l1, l2, l3 new)

The remaining awkwardness in this code comes from having to compute e to a
boolean value and then checking this against 0. While this is correct, it does not lead
to particularly efficient machine code. We will present an improved translation in
the next section.

Here is a similarly straightforward translation for while.

tr(while(e, s)) = l1 : ě;
if (ê == 0) goto l3 ; goto l2 ;

l2 : š ; goto l1;
l3 : (l1, l2, l3 new)

For the kind of processor we are compiling for, it is advantageous for branch
prediction if the conditional jump in the is backwards. We can rotate the loop by
replicating the loop guard (often small) before entry into the loop body.

tr(while(e, s)) = ě;
if (ê == 0) goto l3 ; goto l1 ;

l1 : š ;
ě ;
if (ê) goto l1 ; goto l3 ;

l3 :

6 Translating Boolean Expressions

As indicated above, the code with the translations above does not take advantage
of the way conditional branches work in x86 and x86-64, where we can compare
two values and then branch based on the outcome of the comparison by testing
condition flags. So we may look for ways to translation conditionals (if(e, s1, s2))
and loops (while(e, s)) into simpler code.

One insight is that we use booleans mostly so we can branch on them. So we
define a new function

cp(b, l, l′) = r

LECTURE NOTES SEPTEMBER 26, 2013

Intermediate Representation L10.6

where b is a boolean expression. The resulting command sequence r should jump
to l if b is true and jump to l′ if b is false. Boolean expressions here are compar-
isons, negation, logical and, and logical or. They can also be function calls returning
booleans or constants 0 for false and 1 for true.

We define

cp(e1 ? e2, l, l
′) = ě1 ; ě2 ;

if (ê1 ? ê2) goto l ; goto l′

cp(!e, l, l′) = cp(e, l′, l)
cp(e1 && e2, l, l

′) = cp(e1, l2, l
′) ;

= l2 : cp(e2, l, l
′) (l2 new)

cp(e1 || e2, l, l
′) = left to the reader

cp(0, l, l′) = goto l
cp(1, l, l′) = goto l′

cp(e, l, l′) = ě ;
if (ê != 0) goto l ; goto l′ (e = f(e1, . . . , en))

This is then used in the translation of statements in a straightforward way

tr(if(b, s1, s2)) = cp(b, l1, l2)
l1 : tr(s1) ; goto l3
l2 : tr(s2) ; goto l3
l3 : (l1, l2, l3 new)

We leave while loops using the cp translation to the reader.
We still have to define how to compile an expression that happens to be boolean

(for example, as part of return statement).

tr(e) = 〈 cp(e, l1, l2) ;
l1 : t← 1 ; goto l3
l2 : t← 0 ; goto l3
l3 :

, t 〉 (l1, l2, l3, t new)

7 Ambiguity in Language Specification

The C standard explicity leaves the order of evaluation of expressions unspeci-
fied [KR88, p. 200]:

The precedence and associativity of operators is fully specified, but the order
of evaluation of expressions is, with certain exceptions, undefined, even if the
subexpressions involve side effects.

LECTURE NOTES SEPTEMBER 26, 2013

Intermediate Representation L10.7

At first, this may seem like a virtue: by leaving evaluation order unspecified, the
compiler can freely optimize expressions without running afoul the specification.
The flip side of this coin is that programs are almost by definition not portable.
They may check and execute just fine with a certain compiler, but subtly or catas-
trophically break when a compiler is updated, or the program is compiled with a
different compiler.

A possible reply to this argument is that a program whose proper execution
depends on the order of evaluation is simply wrong, and the programmer should
not be surprised if it breaks. The flaw in this argument is that dependence on
evaluation order may be a very subtle property, and neither language definition
nor compiler give much help in identifying such flaws in a program. No amount
of testing with a single compiler can uncover such problems, because often the code
will execute correctly under the decision made for this compiler. It may even be that
all available compilers at the time the code is written may agree, say, evaluating
expressions from left to right, but the code could break in a future version.

Therefore I strongly believe that language specifications should be entirely un-
ambiguous. In this course, this is also important because we want to hold all com-
pilers to the same standard of correctness. This is also why the behavior of division
by 0 and division overflow, namely an exception, is fully specified. It is not accept-
able for an expression such as (1/0)*0 to be “optimized” to 0. Instead, it must raise
an exception.

The translation to intermediate code presented here therefore must make sure
that any potentially effectful expressions are indeed evaluated from left to right.
Careful inspection of the translation will reveal this to be the case. On the resulting
pure expressions, many valid optimizations can still be applied which would oth-
erwise be impossible, such as commutativity, associativity, or distributivity, all of
which hold for modular arithmetic.

8 Translating C0 to C

At this point in time, the cc0 compiler for C0 performs lexing, parsing, and static
semantic checks and then generates corresponsing C code. This translation has to
take care of protecting the C0 code against the undefined or unspecified behavior
of certain expressions in C. We list here some of them and the compiler’s approach
to accomodating them.

• Undefined behavior of certain divisions, shifts, and memory accesses. These
are handled by protecting the corresponding operations in C with tests and
reliably raising the required exceptions.

• Undefined behavior of overflow of signed integer arithmetic. This is cur-
rently handled using the -fwrapv flag for gcc which requires two’s comple-
ment integer arithmetic for signed quantities. It was previously handled by

LECTURE NOTES SEPTEMBER 26, 2013

Intermediate Representation L10.8

declaring C variables as unsigned (for which modular arithmetic is specified)
and casting them to corresponding signed quantities before comparisons.

• Unspecified evaluation order. This is handled by a similar translation as
shown this lecture, isolating potentially effectful expressions in sequences of
assignment statements. This fixes evaluation order since evaluation order of
a sequence statements is guaranteed in C even if it is not for expressions.

• Unspecified size of int and related integral types. This is currently handled
by checking, before invoking the generated binary, that int does indeed have
32 bits. At a previous point in time it was handled more portably by translat-
ing C0’s int type to C’s int32_t.

Questions

1. In the section on abstract syntax trees it looks like we have defined a language
instead of an abstract syntax tree. What is the difference? Why is there a
difference? What can be represented in the language but not the AST? What
can be represented in the AST but not the language?

2. Which choices of i, j, k, l ∈ {1, 2}make the following translation valid?

tr(e1 + e2) = 〈(ěi; ěj), êk + êl〉

3. You can make your translation more uniform by requiring all translations to
put their results into temp variables using commands, as we did in the lecture
on instruction selection. Discuss the difference.

4. Extend the translations to hand break and continue for while loops under their
C semantics.

5. Does each basic block in the intermediate representation for C0 have at most
2 predecessors?

References

[App98] Andrew W. Appel. Modern Compiler Implementation in ML. Cambridge
University Press, Cambridge, England, 1998.

[KR88] Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language.
Prentice Hall, second edition, 1988.

LECTURE NOTES SEPTEMBER 26, 2013

	Introduction
	Abstract Syntax Trees
	IR Trees
	Translating Expressions
	Translating Statements
	Translating Boolean Expressions
	Ambiguity in Language Specification
	Translating C0 to C

