
Lecture Notes on
Static Single Assignment Form

15-411: Compiler Design
Frank Pfenning

Lecture 6
September 12, 2013

1 Introduction

In abstract machine code of the kind we have discussed so far, a variable of a given
name can refer to different values even in straight-line code. For example, in a code
fragment such as

1 : i← 0
. . .
k : if (i < 0) goto error

we can apply constant propagation of 0 to the condition only if we know that the
definition of i in line 1 is the only one that reaches line k. It is possible that i is
redefined either in the region from 1 to k, or somewhere in the rest of the program
followed by a backwards jump. It was the purpose of the reaching definitions analy-
sis in Lecture 5 to determine whether this is the case.

An alternative is to relabel variables in the code so that each variable is defined
only once in the program text. If the program has this form, called static single
assignment (SSA), then we can perform constant propagation immediately in the
example above without further checks. There are other program analyses and op-
timizations for which it is convenient to have this property, so it has become a de
facto standard intermediate form in many compilers and compiler tools such as the
LLVM.

In this lecture we develop SSA, first for straight-line code and then for code
containing loops and conditionals. Our approach to SSA is not entirely standard
although the results are the same on control flow graphs that can arise from source
programs in the language we compile.

LECTURE NOTES SEPTEMBER 12, 2013

http://www.cs.cmu.edu/~fp/courses/15411-f13/lectures/05-dataflow.pdf


Static Single Assignment Form L6.2

2 Basic Blocks

A basic block is a sequence of instructions with one entry point and one exit point.
In particular, from nowhere in the program do we jump into the middle of the
basic block, nor do we exit the block from the middle. In our language, the last
instruction in a basic block should therefore be a return, goto, or if, where we accept
the pattern

if (x ? c) goto l1
goto l2

at the end of a basic block. On the inside of a basic block we have what is called
straight-line code, namely, a sequence of moves or binary operations.

It is easy to put basic blocks into SSA form. For each variable, we keep a genera-
tion counter to track which definition of a variable is currently in effect. We initialize
this to 0 for any variable live at the beginning of a block. Then we traverse the block
forward, replacing every use of a variable with its current generation. When we see
a redefinition of variable we increment its generation and proceed.

As an example, we consider the following C0 program on the left and its trans-
lation on the right.

int dist(int x, int y) { dist(x,y):

x = x * x; x <- x * x

y = y * y; y <- y * y

return isqrt(x+y); t0 <- x + y

} t1 <- isqrt(t0)

return t1

Here isqrt is an integer square root function previously defined. We have as-
sumed a new form of instruction

d← f(s1, . . . , sn)

where each of the sources si is a constant or variable, and the destination d is an-
other variable. We have also marked the beginning of the function with a parame-
terized label that tracks the variables that may be live in the body of the function.

The parameters x and y start at generation 0. They are defined implicitly because
they obtain a value from the arguments to the call of dist.

dist(x0,y0):

------------- x/0, y/0

x <- x * x

y <- y * y

t0 <- x + y

t1 <- isqrt(t0)

return t1

LECTURE NOTES SEPTEMBER 12, 2013



Static Single Assignment Form L6.3

We mark where we are in the traversal with a line, and indicate there the current
generation of each variable. The next line uses x, which becomes x0, but is also
defines x, which therefore becomes the next generation of x, namely x1.

dist(x0,y0):

x1 <- x0 * x0

------------- x/1, y/0

y <- y * y

t0 <- x + y

t1 <- isqrt(t0)

return t1

The next line is processed the same way.

dist(x0,y0):

x1 <- x0 * x0

y1 <- y0 * y0

------------- x/1, y/1

t0 <- x + y

t1 <- isqrt(t0)

return t1

At the following line, t0 is a new temp. The way we create instructions, temps are
defined only once. We therefore do not have to create a new generation for them.
If we did, it would of course not change the outcome of the conversion. Skipping
ahead now, we finally obtain

dist(x0,y0):

x1 <- x0 * x0

y1 <- y0 * y0

t0 <- x1 + y1

t1 <- isqrt(t0)

return t1

We see that, indeed, each variable is defined (assigned) only once, where the pa-
rameters x0 and y0 are implicitly defined when the function is called and the others
explicity in the body of the function. It is easy to see that the original program and
its SSA form will behave identically.

3 Loops

To appreciate the difficulty and solution of how to handle more complex programs,
we consider the example of the exponential function, where pow(b, e) = be for e ≥
0.

LECTURE NOTES SEPTEMBER 12, 2013



Static Single Assignment Form L6.4

int pow(int b, int e)

//@requires e >= 0;

{

int r = 1;

while (e > 0)

//@loop_invariant e >= 0;

// r*b^e remains invariant

{

r = r * b;

e = e - 1;

}

return r;

}

We translate this to the following abstract machine code.

pow(b,e):

r <- 1

loop:

if (e <= 0) goto done

r <- r * b

e <- e - 1

goto loop

done:

return r

We can transform this into basic blocks, except that we take a small shortcut with
the conditional branch by not following it with an explicit goto to save on space.

pow(b,e):

r <- 1

goto loop

loop:

if (e <= 0) goto done

r <- r * b

e <- e - 1

goto loop

done:

return r

Now we note that there are two ways to reach the label loop: when we first enter the
loop, or from the end of the loop body. This means the variable e in the conditional
branch really could refer to either the procedure argument, or the value of e after
the decrement operation in the loop body. Therefore, our straightforward idea for
SSA conversion of straight line code no longer works.

LECTURE NOTES SEPTEMBER 12, 2013



Static Single Assignment Form L6.5

The key idea is to parameterize labels (the jump targets) with the variables
that are live in the block that follows.1 Labels l occuring as targets in goto l or
if (−) goto l are then given matching arguments.

pow(b,e):

r <- 1

goto loop(b,e)

loop(b,e,r):

if (e <= 0) goto done(r)

r <- r * b

e <- e - 1

goto loop(b,e,r)

done(r):

return r

Next, we convert each block into SSA form with the previous algorithm, but us-
ing a global generation counter throughout. An occurrence in a label in a jump
goto l(. . . , x, . . .) is seen as a use of x, while an occurrence of a variable in in a jump
target l(. . . , x, . . .) is seen as a definition of x. Applying this to the first block we
obtain

pow(b0,e0):

r0 <- 1

goto loop(b0,e0,r0)

-------------------- b/0, e/0, r/0

loop(b,e,r):

if (e <= 0) goto done(r)

r <- r * b

e <- e - 1

goto loop(b,e,r)

done(r):

return r

Since we encounter a new definition of b, e, and r we advance all three generations
and proceed with the next block.

1One can also safely, but redundantly approximate this by using all variables.

LECTURE NOTES SEPTEMBER 12, 2013



Static Single Assignment Form L6.6

pow(b0,e0):

r0 <- 1

goto loop(b0,e0,r0)

loop(b1,e1,r1):

if (e1 <= 0) goto done(r1)

r2 <- r1 * b1

e2 <- e1 - 1

goto loop(b1,e2,r2)

-------------------- b/1, e/2, r/2

done(r):

return r

Completing the conversion with the last block, we obtain:

pow(b0,e0):

r0 <- 1

goto loop(b0,e0,r0)

loop(b1,e1,r1):

if (e1 <= 0) goto done(r1)

r2 <- r1 * b1

e2 <- e1 - 1

goto loop(b1,e2,r2)

done(r3):

return r3

First, we verify that this code does indeed have the SSA property: each variable
is assigned at most once, even counting implicit definitions at the parameterized
labels pow(b0, e0), loop(b1, e1, r1), and done(r3). The operational reading of this pro-
gram should be evident. For example, if we reach goto loop(b0, e0, r0) we pass
the current values of b0, e0 and r0 and move them into variables b1, e1, and r1.
That fact that labeled jumps correspond to moving values from arguments to la-
bel parameters will be the essence of how to generate assembly code from the SSA
intermediate form in Section 7.

4 SSA and Functional Programs

We can notice that at this point the program above can be easily interpreted as a
functional program if we read assignments as bindings and labeled jumps as function
calls. We show the functional program below on the right in ML-like form.

LECTURE NOTES SEPTEMBER 12, 2013



Static Single Assignment Form L6.7

pow(b0,e0): fun pow(b0,e0) =

r0 <- 1 let r0 = 1

goto loop(b0,e0,r0) in loop(b0,e0,r0)

loop(b1,e1,r1): and loop(b1,e1,r1) =

if (e1 <= 0) goto done(r1) if e1 <= 0 then done(r1)

r2 <- r1 * b1 else let r2 = r1 * b1

e2 <- e1 - 1 and e2 = e1 - 1

goto loop(b1,e2,r2) in loop(b1,e2,r2)

done(r3): and done(r3) =

return r3 r3

There are several reasons this works in general. First, in SSA form each variable is
defined only once, which means it can be modeled by a let binding in a functional
language. Second, each goto is at the end of a block, which translates into a tail
call in the functional language. Third, because all jumps become tail calls, a return
instruction can be modeled simply be returning the corresponding value.

We conclude that translation into SSA form is just translating abstract machine
code to a functional program! Because our language does not have first-class func-
tions, the target of this translation also does not have higher-order functions. Inter-
estingly, this observation also works in reverse: a (first-order) functional program
with tail calls can be translated into abstract machine code where tail calls become
jumps.

While this is clearly an interesting observation, it does not directly help our
compiler construction effort (although it might if we were interested in compiling
a functional language).

5 Optimization and Minimal SSA Form

At this point we have constructed clean and simple abstract machine code with
parameterized labels. But are all the parameters really necessary? Let’s reconsider:

pow(b0,e0):

r0 <- 1

goto loop(b0,e0,r0)

loop(b1,e1,r1):

if (e1 <= 0) goto done(r1)

r2 <- r1 * b1

e2 <- e1 - 1

goto loop(b1,e2,r2)

LECTURE NOTES SEPTEMBER 12, 2013



Static Single Assignment Form L6.8

done(r3):

return r3

For example, done(r3) is only targeted from one location, with a goto done(r1).
There is no need to pass r1 and assign its value to r3. We can instead remove this
argument from the label done and substitute r1 for r3. This yields:

pow(b0,e0):

r0 <- 1

goto loop(b0,e0,r0)

loop(b1,e1,r1):

if (e1 <= 0) goto done()

r2 <- r1 * b1

e2 <- e1 - 1

goto loop(b1,e2,r2)

done():

return r1

We see this is still in SSA form. Next we can ask if all the arguments to loop are
really necessary. We have two gotos and one definition:

goto loop(b0,e0,r0)

goto loop(b1,e3,r2)

loop(b1,e1,r1):

Let’s consider the first argument. In the first call it is b0 and in the second b1. Since
we have SSA form, we know that the b1 will always hold the same value. In fact,
the only call with a different value is with b0, so b1 will in fact always have the
value b0. This means the first argument to loop is not needed and we can erase it,
substituting b0 for b1. This yields:

pow(b0,e0):

r0 <- 1

goto loop(e0,r0)

loop(e1,r1):

if (e1 <= 0) goto done()

r2 <- r1 * b0

e2 <- e1 - 1

goto loop(e2,r2)

done():

return r1

LECTURE NOTES SEPTEMBER 12, 2013



Static Single Assignment Form L6.9

It is easy to check this is still in SSA form. The remaining arguments to loop are all
different, however (e0 and e3 for e1 and r0 and r2 for r1), so we cannot optimize
further.

This code is now in minimal SSA form in the sense that we cannot remove any
label arguments by purely syntactic considerations.

The general case for this optimization is as follows: assume we have a param-
eterized label l(. . . , xi, . . .) : where all gotos have the form goto l(. . . , xi, . . .) (for
the same generation i) or goto l(. . . , xk, . . .) (all at the same generation k). Then
the x argument to l is redundant, and xi can be replaced by xk everywhere in the
program.

6 Extended Basic Blocks and Conditionals

As a special case of the rule at the end of the last section, we see that if a label is
the target of exactly one jump, then this condition is automatically satisfied for all
of its parameters. This was the case for the label ’done’ in our example. In such a
case, all parameters of this label can be removed.

We can then go a step further and not generate parameters to labels that are
targeted only once. An extended basic block is a collection of basic blocks with one
label at the beginning (that may be the target of multiple jumps) and internal labels,
each of which is the target of only one internal jump and no external jumps.

When converting to SSA form, we can treat extended basic blocks as a single
unit, since we do not have to create fresh parameterized labels within them. We
have already applied this idea tacitly, because in our exponential function, strictly
speaking, the loop should be decomposed into basic blocks as

loop:

if (e <= 0) goto done

goto body

body:

r <- r * b

e <- e - 1

goto loop

However, the label ’body’ is targeted only by one jump, so we contracted the two
instructions. The optimization discussed above is a post-hoc justification for this.

Next we consider conditionals as a new language feature. We change our pro-
gram to a “fast” power function which exploits the equations b2e = (b ∗ b)e and
b2e+1 = b ∗ (b ∗ b)e. The C0 program is on the left, its abstract assembly form on the
right.

LECTURE NOTES SEPTEMBER 12, 2013



Static Single Assignment Form L6.10

int fastpow(int b, int e) fastpow(b,e):

//@requires e >= 0; r <- 1

{ goto loop

int r = 1; loop:

while (e > 0) if (e <= 0) goto done

//@loop_invariant e >= 0; t0 <- e % 2

// r * b^e remains invariant if (t0 == 0) goto next

{ r <- r * b

if (e % 2 != 0) goto next

r = r * b; next:

b = b * b; b <- b * b

e = e / 2; e <- e / 2

} goto loop

return r; done:

} return r

We see that the compiling the conditional creates another situation where we have
one label (next) is the target of two jumps. This is often the case for conditionals,
because the control flow graph has edges from each branch of the conditional to
the statement following the conditional.

Next, we parameterize labels that are the target of more than one jump with the
variables live at that program point.

fastpow(b,e):

r <- 1

goto loop(b,e,r)

loop(b,e,r):

if (e <= 0) goto done

t0 <- e % 2

if (t0 == 0) goto next(b,e,r)

r <- r * b

goto next(b,e,r)

next(b,e,r):

b <- b * b

e <- e / 2

goto loop(b,e,r)

done:

return r

Now we convert to SSA form by generating multiple generations of variables, as
in the previous example. Make sure you understand the process on this code.

LECTURE NOTES SEPTEMBER 12, 2013



Static Single Assignment Form L6.11

fastpow(b0,e0):

r0 <- 1

goto loop(b0,e0,r0)

loop(b1,e1,r1):

if (e1 <= 0) goto done

t0 <- e1 % 2

if (t0 == 0) goto next(b1,e1,r1)

r2 <- r1 * b1

goto next(b1,e1,r2)

next(b2,e2,r3):

b3 <- b2 * b2

e3 <- e2 / 2

goto loop(b3,e3,r3)

done:

return r1

Next we minimize. We see the following parameterized labels and labeled jumps:

loop(b1,e1,r1):

goto loop(b0,e0,r1)

goto loop(b3,e3,r3)

next(b2,e2,r3):

goto next(b1,e1,r1)

goto next(b1,e1,r2)

We see that all arguments to loop are necessary, but that the b and e arguments in
the calls to next are the same and can be eliminated (substituting b1 for b2 and e1 for
e2). This yields the SSA at the top of the next page.

If we want a minimal SSA (which we should), we now need to re-examine the
calls to loop, because it is possible that the substitution of b1 for b2 and e1 for e2
has unified arguments that were previously distinct. That might in turn render
other parameters redundant. Here, we observe that we have already reached the
minimal SSA form.

LECTURE NOTES SEPTEMBER 12, 2013



Static Single Assignment Form L6.12

fastpow(b0,e0):

r0 <- 1

goto loop(b0,e0,r0)

loop(b1,e1,r1):

if (e1 <= 0) goto done

t0 <- e1 % 2

if (t0 == 0) goto next(r1)

r2 <- r1 * b1

goto next(r2)

next(r3):

b3 <- b1 * b1

e3 <- e1 / 2

goto loop(b3,e3,r3)

done:

return r1

7 Assembly Code Generation from SSA Form

Of course, actual assembly code does not allow parametrized labels. To recover
lower level code, we need to implement labeled jumps by moves followed by plain
jumps. We show this again on the first example, with SSA and the left and the
de-SSA form on the right.

pow(b0,e0): pow(b0,e0):

r0 <- 1 r0 <- 1

goto loop(e0,r0) e1 <- e0

r1 <- r0

goto loop

loop(e1,r1): loop:

if (e1 <= 0) goto done() if (e1 <= 0) goto done

r2 <- r1 * b0 r2 <- r1 * b0

e2 <- e1 - 1 e2 <- e1 - 1

goto loop(e2,r2) e1 <- e2

r1 <- r2

goto loop

done(): done:

return r1 return r1

LECTURE NOTES SEPTEMBER 12, 2013



Static Single Assignment Form L6.13

In some cases of conditional jumps, there may be no natural place for the additional
move instructions and we may have to introduce a new jump target. This is illus-
trated in the next example, which continues fastpow from above. All the variable
to variable moves in this program arise from resolving the labeled jump shown on
their left.

fastpow(b0,e0): fastpow(b0,e0):

r0 <- 1 r0 <- 1

goto loop(b0,e0,r0) b1 <- b0

e1 <- e0

r1 <- r0

loop(b1,e1,r1): loop:

if (e1 <= 0) goto done if (e1 <= 0) goto done

t0 <- e1 % 2 t0 <- e1 % 2

if (t0 == 0) goto next(r1) if (t0 == 0) goto next0

r2 <- r1 * b1 r2 <- r1 * b1

goto next(r2) r3 <- r2

goto next

next0:

r3 <- r1

goto next

next(r3): next:

b3 <- b1 * b1 b3 <- b1 * b1

e3 <- e1 / 2 e3 <- e1 / 2

goto loop(b3,e3,r3) b1 <- b3

e1 <- e3

r1 <- r3

goto loop

done: done:

return r1 return r1

Either way, we retain here the parameters at the function boundary; we will
talk about how the implementation of function calls in a later lecture.

The new form on the right is of course no longer in SSA form. Therefore one
cannot apply any SSA-based optimization. Conversion out of SSA should therefore
be one of the last steps before code emission. At this point register allocation, pos-
sibly with register coalescing, can do a good job of eliminating redundant moves.

LECTURE NOTES SEPTEMBER 12, 2013



Static Single Assignment Form L6.14

8 Φ Functions

Our presentation of SSA using parameterized labels is not standard in the litera-
ture. Instead, the standard representation of SSA form uses so-called Φ functions.
A Φ function is not actually a function, but represents the assignment of the label
parameter from all the jumps that target it. In order for this to be precise, we in-
dicate for each jump which number of argument in the Φ function this particular
jump represents. This perhaps best seen in the fastpow example, with the parame-
terized label form on the left and Φ functions on the right.

fastpow(b0,e0): fastpow(b0,e0):

r0 <- 1 r0 <- 1

goto loop(b0,e0,r0) goto loop/0

loop(b1,e1,r1): loop:

b1 <- phi(b0,b3)

e1 <- phi(e0,e3)

r1 <- phi(r0,r3)

if (e1 <= 0) goto done if (e1 <= 0) goto done

t0 <- e1 % 2 t0 <- e1 % 2

if (t0 == 0) goto next(r1) if (t0 == 0) goto next/0

r2 <- r1 * b1 r2 <- r1 * b1

goto next(r2) goto next/1

next(r3): next:

r3 <- phi(r1,r2)

b3 <- b1 * b1 b3 <- b1 * b1

e3 <- e1 / 2 e3 <- e1 / 2

goto loop(b3,e3,r3) goto loop/1

done: done:

return r1 return r1

Φ functions only make sense at the beginning of blocks, and they should al-
ways have exactly as many arguments as jumps targeting the beginning of the
block. Sometimes, the argument number indicators are omitted from from jumps,
in which case the textual representation of the abstract assembly code does not
have enough information to unambiguously determine its meaning. Then we need
a global convention, such as the textually first jump supplies the first argument to
the Φ functions, the second jump the second, etc.

LECTURE NOTES SEPTEMBER 12, 2013



Static Single Assignment Form L6.15

9 Graphical Representation

A control flow graph is often represented visually as a graph where the nodes are
basic blocks and the directed edges are jump (whether conditional or not). For
example, the fastpow function might be drawn as:

r	  ←	  1	  

if	  (e	  ≤	  0)	   return	  r	  	  

t0	  ←	  e	  %	  2	  
if	  (t0	  ==	  0)	  

b	  ←	  b	  *	  b	  
e	  ←	  e	  /	  2	  

r	  ←	  r	  *	  b	  

fastpow(b,e):	  

y	  

y	  

n	  

n	  

Although not commonly used, SSA form with parameterized labels might look
like this:

LECTURE NOTES SEPTEMBER 12, 2013



Static Single Assignment Form L6.16

r0	  ←	  1	  

loop(b1,e1,r1):	  
if	  (e1	  ≤	  0)	  

return	  r1	  	  

t0	  ←	  e1	  %	  2	  
if	  (t0	  ==	  0)	  
next(r1)	  

next(r3):	  
b3	  ←	  b1	  *	  b1	  
e3	  ←	  e1	  /	  2	  
loop(b3,e3,r3)	  

r2	  ←	  r1	  *	  b1	  
next(r2)	  

fastpow(b0,e0):	  

y	  

y	  

n	  

n	  

If we use Φ-functions instead, they would be inserted at the beginning basic
blocks.

r0	  ←	  1	  

b1	  =	  Φ(b0,b3)	  
e1	  =	  Φ(e0,e3)	  
r1	  =	  Φ(r0,r3)	  
if	  (e1	  ≤	  0)	  

return	  r1	  	  

t0	  ←	  e1	  %	  2	  
if	  (t0	  ==	  0)	  

r3	  =	  Φ(r1,r2)	  
b3	  ←	  b1	  *	  b1	  
e3	  ←	  e1	  /	  2	  

r2	  ←	  r1	  *	  b1	  
next(r2)	  

fastpow(b0,e0):	  

y	  

y	  

n	  

n	  

LECTURE NOTES SEPTEMBER 12, 2013



Static Single Assignment Form L6.17

When we de-SSA, the necessary register moves are added along the edges going
into each node which starts with Φ-functions.

b1	  ←	  b0	  
e1	  ←	  e0	  
r1	  ←	  r0	  

r0	  ←	  1	  

if	  (e1	  ≤	  0)	   return	  r1	  	  

t0	  ←	  e1	  %	  2	  
if	  (t0	  ==	  0)	  

b3	  ←	  b1	  *	  b1	  
e3	  ←	  e1	  /	  2	  

r2	  ←	  r1	  *	  b1	  

fastpow(b0,e0):	  

y	  

y	  

n	  
b1	  ←	  b3	  
e1	  ←	  e3	  
r1	  ←	  r3	   r3	  ←	  r1	   r3	  ←	  r2	  

n	  

10 Conclusion

Static Single Assignment (SSA) form is a quasi-functional form of abstract machine
code, where variable assignments are variable bindings, and jumps are tail calls.
It was devised by Cytron et al. [CFR+89] and simplifies many program analyses
and optimization. Of course, you have to make sure that program transforma-
tions maintain the property. The particular algorithm for conversion into SSA form
we describe here is to due Aycock and Horspool [AH00]. Hack has shown that
programs in SSA form generate chordal interference graphs which means register
allocation by graph coloring is particularly efficient [Hac07]. For further reading
and some different algorithms related to SSA, you can also consult the Chapter 19
of the textbook [App98].

Questions

1. Can you think of an example of minimal SSA that nevertheless has redundant
label arguments?

2. Can you think of situations where the control flow graph for a conditional
does not have a subsequent basic block with two incoming control flow edges?

LECTURE NOTES SEPTEMBER 12, 2013



Static Single Assignment Form L6.18

References

[AH00] John Aycock and R. Nigel Horspool. Simple generation of static single-
assignment form. In D. Watt, editor, Proceedings of the 9th International
Conference on Compiler Construction (CC’00), pages 110–124. Springer
LNCS 1781, 2000.

[App98] Andrew W. Appel. Modern Compiler Implementation in ML. Cambridge
University Press, Cambridge, England, 1998.

[CFR+89] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and
F. Kenneth Zadeck. An efficient method of computing static single as-
signment form. In Conference Record of the 16th Annual Symposium on
Principles of Programming Languages (POPL 1989), pages 25–35, Austin,
Texas, January 1989. ACM Press.

[Hac07] Sebastian Hack. Register Allocation for Programs in SSA Form. PhD thesis,
Universität Karlsruhe, October 2007.

LECTURE NOTES SEPTEMBER 12, 2013


	Introduction
	Basic Blocks
	Loops
	SSA and Functional Programs
	Optimization and Minimal SSA Form
	Extended Basic Blocks and Conditionals
	Assembly Code Generation from SSA Form
	 Functions
	Graphical Representation
	Conclusion

