
Lecture Notes on
Dataflow Analysis

15-411: Compiler Design
Frank Pfenning, André Platzer

Lecture 5
September 10, 2013

1 Introduction

In this lecture we first extend liveness analysis to handle memory references and
then consider neededness analysis which is similar to liveness and used to discover
dead code. Both liveness and neededness are backwards dataflow analyses. We then
describe reaching definitions, a forwards dataflow analysis which is an important
component of optimizations such as constant propagation or copy propagation.

2 Memory References

Recall the rules specifying liveness analysis from the previous lecture.

use(l, x)

live(l, x)
K1

live(l′, u)
succ(l, l′)
¬def(l, u)

live(l, u)
K2

We do not repeat the rules for extracting def, use, and succ from the program. They
represent the following:

• use(l, x): the instruction at l uses variable x.

• def(l, x): the instruction at l defines (that is, writes to) variable x.

• succ(l, l′): the instruction executed after l may be l′.

In order to model the store in our abstract assembly language, we add two new
forms of instructions

LECTURE NOTES SEPTEMBER 10, 2013



Dataflow Analysis L5.2

• Load: y ←M [x].

• Store: M [x]← y.

All that is needed to extend the liveness analysis is to specify the def, use, and succ
properties of these two instructions.

l : x←M [y]

def(l, x)
use(l, y)
succ(l, l + 1)

J6
l : M [y]← x

use(l, x)
use(l, y)
succ(l, l + 1)

J7

The rule J7 for storing register contents to memory does not define any value, be-
cause liveness analysis does not track memory, only variables which then turn into
registers. Tracking memory is indeed a difficult task and subject of a number of
analyses of which alias analysis is the most prominent. We will consider this in a
later language.

The two rules for liveness itself do not need to change! This is an indication
that we refactored the original specification in a good way.

3 Dead Code Elimination

An important optimization in a compiler is dead code elimination which removes un-
needed instructions from the program. Even if the original source code does not
contain unnecessary code, after translation to a low-level language dead code often
arises either just as an artefact of the translation itself or as the result of optimiza-
tions. We will see an example of these phenomena in Section 5; here we just use a
small example.

In this code, we compute the factorial x! of x. The variable x is live at the first
line. This would typically be the case of an input variable to a program.x

Instructions Live variables
1 : p← 1 x
2 : p← p ∗ x p, x
3 : z ← p+ 1 p, x (z not live⇒ dead code?)
4 : x← x− 1 p, x
5 : if (x > 0) goto 2 p, x
6 : return p p

The only unusual part of the loop is the unnecessary computation of p+ 1.
We may suspect that line 3 is dead code, and we should be able to eliminate

it, say, by replacing it with some nop instruction which has no effect, or perhaps
eliminate it entirely when we finally emit the code. The reason to suspect that line

LECTURE NOTES SEPTEMBER 10, 2013



Dataflow Analysis L5.3

3 is dead code is that z is not live at the point where we define it. While this may
be sufficient reason to eliminate the assignment here, this is not true in general. For
example, we may have an assignment such as z ← p/x which is required to raise
an exception if x = 0, or if an overflow occurs, because the result is too large to fit
into the allotted bits on the target architecture (division by -1). Another example
is a memory reference such as z ← M [x] which is required to raise an exception
if the address x has actually not been allocated or is not readable by the executing
process. We will come back to these exceptions in the next section. First, we discuss
another phenomenon exhibited in the following small modification of the program
above. x

Instructions Live variables
1 : p← 1 x, z
2 : p← p ∗ x p, x, z
3 : z ← z + 1 p, x, z (live but not needed)
4 : x← x− 1 p, x, z
5 : if (x > 0) goto 2 p, x, z
6 : return p p

Here we see that z is live in the loop (and before it) even though the value of z does
not influence the final value returned. To see this yourself, note that in the first
backwards pass we find z to be used at line 3. After computing p, x, and z to be
live at line 2, we have to reconsider line 5, since 2 is one of its successors, and add
z as live to lines 5, 4, and 3.

This example shows that liveness is not precise enough to eliminate even simple
redundant instructions such as the one in line 3 above.

4 Neededness

In order to recognize that assignments as in the previous example program are
indeed redundant, we need a different property we call neededness. We will struc-
ture the specification in the same way as we did for liveness: we analyze each
instruction and extract the properties that are necessary for neededness to proceed
without further reference to the program instructions themselves.

The crucial first idea is that the some variables are needed because an instruc-
tion they are involved in may have an effect. Let’s call such variable necessary. For-
mally, we write nec(l, x) to say that x is necessary at instruction l. We use the
notation � for a binary operator which may raise an exception, such as division or
the modulo operator. For our set of instructions considered so far, the following

LECTURE NOTES SEPTEMBER 10, 2013



Dataflow Analysis L5.4

are places where variables are necessary because of the possiblity of effects.

l : x← y � z

nec(l, y)
nec(l, z)

E1

l : if (x ? c) goto l′

nec(l, x)
E2

l : return x

nec(l, x)
E3

l : y ←M [x]

nec(l, x)
E4

l : M [x]← y

nec(l, x)
nec(l, y)

E5

Here, x is flagged as necessary at a return statement because that is the final value
returned, and a conditional branch because it is necessary to test the condition. The
effect here is either the jump, or the lack of a jump.

A side remark: on many architectures including the x86 and x86-64, appar-
ently innocuous instructions such as x← x+ y have an effect because they set the
condition code registers. This makes optimizing unstructured machine code quite
difficult. However, in compiler design we have a secret weapon: we only have to
optimize the code that we generate! For example, if we make sure that when we
compile conditionals, the condition codes are set immediately before the branch-
ing instruction examines them, then the implicit effects of other instructions that
are part of code generation are benign and can be ignored. However, such “benign
effects” may be lurking in unexpected places and may perhaps not be so benign
after all, so it is important to reconsider them especially as optimizations become
more aggressive. Possible downsides of such convention choices can partially be
optimized away in the post optimization phase that we will discuss later.

Now that we have extracted when variables are immediately necessary at any
given line, we have to exploit this information to compute neededness. We write
needed(l, x) if x is needed at l. The first rule captures the motivation for designing
the rules for necessary variables.

nec(l, x)

needed(l, x)
N1

This seeds the neededness relation and we need to consider how to propagate it.
Our second rule is an exact analogue of the way we propagate liveness.

needed(l′, u)
succ(l, l′)
¬def(l, u)

needed(l, u)
N2

The crucial rule is the last one. In an assignment x ← y ⊕ z the variables y and z
are needed if x is needed in the remaining computation. If x cannot be shown to

LECTURE NOTES SEPTEMBER 10, 2013



Dataflow Analysis L5.5

be needed, then y and z are not needed if ⊕ is an effect free operation. Abstracting
away from the particular instruction, we get the following:

use(l, y)
def(l, x)
succ(l, l′)
needed(l′, x)

needed(l, y)
N3

We see that neededness analysis is slightly more complex than liveness analysis:
it requires three rules instead of two, and we need the new concept of a variable
necessary for an instruction due to effects. We can restructure the program slightly
and could unify the formulas nec(l, x) and needed(l, x). This is mostly a matter of
taste and modularity. Personally, I prefer to separate local properties of instructions
from those that are propagated during the analysis, because local properties are
more easily re-used. The specification of neededness is actually an example of that:
it re-uses use(l, x) in rule N3 which we first introduced for liveness analysis. If we
had structured liveness analysis so that the rules for instructions generate live(l, x)
directly, it would not have worked as well here.

We can now perform neededness analysis on our example program. We have
indexed each variable with the numbers of all rules that can be used to infer that
they are needed (N1, N2, or N3).x

Instructions Needed variables
1 : p← 1 x2

2 : p← p ∗ x p3, x2,3

3 : z ← z + 1 p2, x2

4 : x← x− 1 p2, x3

5 : if (x > 0) goto 2 p2, x1,2

6 : return p p1

At the crucial line 3, z is defined but not needed on line 4, and consequently it is
not needed at line 3 either.

Since the right-hand side of z ← z + 1 does not have an effect, and z is not
needed at any successor line, this statement is dead code and can be optimized
away.

5 Optimization Example

The natural direction for both liveness analysis and neededness analysis is to tra-
verse the program backwards. In this section we present another important anal-
ysis whose natural traversal directions is forward. As motivating example for this
kind of analysis we use an array access with bounds checks.

LECTURE NOTES SEPTEMBER 10, 2013



Dataflow Analysis L5.6

In our source language C0 we will have an assignment x = A[0] where A is an
array. We also assume there are (assembly language) variables n with the number
of elements in array A, variable s with the size of the array elements, and a with the
base address of the array. We might then translate the assignment to the following
code:

1 : i← 0
2 : if (i < 0) goto error
3 : if (i ≥ n) goto error
4 : t← i ∗ s
5 : u← a+ t
6 : x←M [u]
7 : return x

The last line is just to create a live variable x. We notice that line 2 is redundant be-
cause the test will always be false. Computationally, we can figure this out in two
steps. First we apply constant propagation to replace (i < 0) by (0 < 0) and then ap-
ply constant folding to evaluate the comparison to 0 (representing falsehood). Line
3 is necessary unless we know that n > 0. Line 4 performs a redundant multiplica-
tion: because i is 0 we know t must also be 0. This is an example of an arithmetic
optimization similar to constant folding. And now line 5 is a redundant addition
of 0 and can be turned into a move u← a, again a simplification of modular arith-
metic.

At this point the program has become

1 : i← 0
2 : nop
3 : if (i ≥ n) goto error
4 : t← 0
5 : u← a
6 : x←M [u]
7 : return x

Now we notice that line 4 is dead code because t is not needed. We can also apply
copy propagation to replace M [u] by M [a], which now makes u not needed so we can
apply dead code elimination to line 4. Finally, we can again apply constant propagation
to replace the only remaining occurrence of i in line 3 by 0 followed by dead code
elimination for line 1 to obtain

1 : nop
2 : nop
3 : if (0 ≥ n) goto error
4 : nop
5 : nop
6 : x←M [a]
7 : return x

LECTURE NOTES SEPTEMBER 10, 2013



Dataflow Analysis L5.7

which can be quite a bit more efficient than the first piece of code. Of course, when
emitting machine code we can delete the nop operations to reduce code size.

One important lesson from this example is that many different kinds of opti-
mizations have to work in concert in order to produce efficient code in the end.
What we are interested in for this lecture is what properties we need for the code
to ensure that the optimization are indeed applicable.

We return to the very first optimization of constant propagation. We replaced
the test (i < 0) with (0 < 0). This looks straightforward, but what happens if some
other control flow path can reach the test? For example, we can insert an increment
and a conditional to call this optimization into question.

1 : i← 0 1 : i← 0
2 : if (i < 0) goto error 2 : if (i < 0) goto error
3 : if (i ≥ n) goto error 3 : if (i ≥ n) goto error
4 : t← i ∗ s 4 : t← i ∗ s
5 : u← a+ t 5 : u← a+ t
6 : x←M [u] 6 : x←M [u]
7 : return x 7 : i← i+ 1

8 : if (i < n) goto 2
9 : return x

Even though lines 1–6 have not changed, suddenly we can no longer replace (i < 0)
with (0 < 0) because the second time line 2 is reached, i is 1. With arithmetic
reasoning we may be able to recover the fact that line 2 is redundant, but pure
constant propagation and constant folding is no longer sufficient.

What we need to know for copy propagation is that the definition of i in line 1
is the only definition of i that can reach line 2. This is true in the program on the
left, but not on the right since the definition of i at line 7 can also reach line 2 if the
condition at line 9 is true.

6 Reaching Definitions

We say a definition l : x← . . . reaches a line l′ if there is a path of control flow from
l to l′ during which x is not redefined. In logical language:

• reaches(l, x, l′) if the definition of x at l reaches l′ (especially x has not been
redefined since).

We only need two inference rules to define this analysis. The first states that a
variable definition reaches any immediate successor. The second expresses that we
can propagate a reaching definition of x to all successors of a line l′ we have already

LECTURE NOTES SEPTEMBER 10, 2013



Dataflow Analysis L5.8

reached, unless this line also defines x.

def(l, x)
succ(l, l′)

reaches(l, x, l′)
R1

reaches(l, x, l′)
succ(l′, l′′)
¬def(l′, x)

reaches(l, x, l′′)
R2

Analyzing the original program on the left, we see that the definition of i at line
1 reaches lines 2–7, and this is (obviously) the only definition of i reching lines 2
and 4. We can therefore apply the optimizations sketched above.

In the program on the right hand side, the definition of i at line 7 also reaches
lines 2–8 so neither optimization can be applied.

Inspection of rule R2 confirms the intuition that reaching definitions are propa-
gated forward along the control flow edges. Consequently, a good implementation
strategy starts at the beginning of a program and computes reaching definitions in
the forward direction. Of course, saturation in the presence of backward branches
means that we may have to reconsider earlier lines, just as in the backwards analy-
sis.

A word on complexity: we can bound the size of the saturated database for
reaching definitions by L2, where L is the number of lines in the program. This is
because each line defines at most one variable (or, in realistic machine code, a small
constant number). Counting prefix firings (which we have not yet discussed) does
not change this estimate, and we obtain a complexity of O(L2). This is not quite as
efficient as liveness or neededness analysis (which are O(L · V )), so we may need
to be somewhat circumspect in computing reaching definitions.

7 Summary

We have extended the ideas behind liveness analysis to neededness analysis which
enables more aggressive dead code elimination. Neededness is another example of
a program analysis proceeding naturally backward through the program, iterating
through loops.

We have also seen reaching definitions, which is a forward dataflow analysis
necessary for a number of important optimizations such as constant propagation
or copy propagation. Reaching definitions can be specified in two rules and do
not require any new primitive concepts beyond variable definitions (def(x, l)) and
the control flow graph (succ(l, l′)), both of which we already needed for liveness
analysis.

Another important observation from the need for dataflow analysis informa-
tion during optimization is that dataflow analysis may have to be rerun after an
optimization transformed the program. Rerunning all analysis exhaustively all
the time after each optimization may be time-consuming. Adapting the dataflow

LECTURE NOTES SEPTEMBER 10, 2013



Dataflow Analysis L5.9

analysis information during optimization transformations is sometimes possible
as well, but correctness is less obvious. SSA alleviates this problem somewhat, be-
cause some (but not all) dataflow analysis informations are readily read off from
SSA.

For an alternative approach to dataflow analysis via dataflow equations, see the
textbook [App98], Chapters 10.1 and 17.1–3. Notes on implementation of dataflow
analyses are in Chapter 10.1–2 and 17.4. Generally speaking, a simple iterative im-
plementation with a library data structure for sets which traverses the program in
the natural direction should be efficient enough for our purposes. We would ad-
vise against using bitvectors for sets. Not only are the sets relatively sparse, but
bitvectors are more time-consuming to implement. An interesting alternative to
iterating over the program, maintaining sets, is to do the analysis one variable at
a time (see the remark on page 216 of the textbook). The implementation via a
saturating engine for Datalog is also interesting, yet a bit more difficult to tie into
the infrastructure of a complete compiler. The efficiency gain noted by Whaley et
al. [WACL05] becomes only critical for interprocedural and whole program analy-
ses rather than for the intraprocedural analyses we have presented so far.

Questions

1. Why does or liveness analysis not track memory? Should it?

2. Why is neededness different from liveness? Could we reuse part of one anal-
ysis for the other? Should we?

3. Why should it be a problem if a single dataflow analysis is slow? We only
run it once, don’t we?

4. How can the def/use/succ information be made accessible conveniently in a
programming language? Does it improve the structure of the code if we do
that?

5. Should our intermediate representation have an explicit representation of the
control flow graph? What are the benefits and downsides?

6. Why should we care about dead code elimination? Nobody writes dead code
down anyways, because that’d be a waste of time.

7. Where do the arithmetic optimizations alluded to in this lecture play a role in
compiling? When are they important?

8. Suppose x = y/z is computed but x never used later. That would make the
statement not needed and dead code if it wasn’t for the fact that the division
could have side effects. So it is needed. But what would liveness analysis

LECTURE NOTES SEPTEMBER 10, 2013



Dataflow Analysis L5.10

do about it? How does this impact register allocation? What is the interplay
with the special register requirements of integer division?

References

[App98] Andrew W. Appel. Modern Compiler Implementation in ML. Cambridge
University Press, Cambridge, England, 1998.

[WACL05] John Whaley, Dzintars Avots, Michael Carbin, and Monica S. Lam. Us-
ing Datalog and binary decision diagrams for program analysis. In
K.Yi, editor, Proceedings of the 3rd Asian Symposium on Programming Lan-
guages and Systems (APLAS’05), pages 97–118. Springer LNCS 3780,
November 2005.

LECTURE NOTES SEPTEMBER 10, 2013


	Introduction
	Memory References
	Dead Code Elimination
	Neededness
	Optimization Example
	Reaching Definitions
	Summary

