
Lecture Notes on
Instruction Selection

15-411: Compiler Design
Frank Pfenning

Lecture 2
August 29, 2013

1 Introduction

In this lecture we discuss the process of instruction selection, which typcially turns
some form of intermediate code into a pseudo-assembly language in which we
assume to have infinitely many registers called “temps”. We next apply register
allocation to the result to assign machine registers and stack slots to the temps be-
fore emitting the actual assembly code. Additional material regarding instruction
selection can be found in the textbook [App98, Chapter 9].

2 A Simple Source Language

We use a very simple source language where a program is just a sequence of assign-
ments terminated by a return statement. The right-hand side of each assignment is
a simple arithmetic expression. Later in the course we describe how the input text
is parsed and translated into some intermediate form. Here we assume we have
arrived at an intermediate representation where expressions are still in the form of
trees and we have to generate instructions in pseudo-assembly. We call this form
IR Trees (for “Intermediate Representation Trees”).

We describe the possible IR trees in a kind of pseudo-grammar, which should
not be read as a description of the concrete syntax, but the recursive structure of
the data.

LECTURE NOTES AUGUST 29, 2013

Instruction Selection L2.2

Programs ~s ::= s1, . . . , sn sequence of statements

Statements s ::= t = e assignment
| return e return, always last

Expressions e ::= c integer constant
| t temp (variable)
| e1 ⊕ e2 binary operation

Binops ⊕ ::= + | − | ∗ | / | . . .

3 Abstract Assembly Target Code

For our very simple source, we use an equally simple target. Our target language
has fixed registers and also arbitrary temps, which it shares with the IR trees.

Programs ~i ::= i1, . . . , in

Instructions i ::= d← s
| d← s1 ⊕ s2

Operands d, s ::= r register
| c immediate (integer constant)
| t temp (variable)

We use d to denote operands of instructions that are destinations of operations
and s for sources of operations. There are some restrictions. In particular, immediate
operands cannot be destinations. More restrictions arise when memory references
are introduced. For example, it may not be possible for more than one operand to
be a memory reference.

4 Maximal Munch

The simplest algorithm for instruction selection proceeds top-down, traversing the
input tree and recursively converting subtrees to instruction sequences. For this to
work properly, we either need to pass down or return a way to refer to the result
computed by an instruction sequence. In lecture, it was suggest to pass down a
destination for the result of an operation. We therefore have to implement a function

cogen(d, e) a sequence of instructions implementing e,
putting the result into destination d.

LECTURE NOTES AUGUST 29, 2013

Instruction Selection L2.3

e cogen(d, e) proviso
c d← c

t d← t

e1 ⊕ e2 cogen(t1, e1), cogen(t2, e2), d← t1 ⊕ t2 (t1, t2 new)

If our target language has more specialized instructions we can easily extend
this translation by matching against more specialized patterns and matching against
them first. For example: if we want to implement multiplication by the constant 2
with a left shift, we would add one or two patterns for that.

e cogen(d, e) proviso
c d← c

t d← t

2 ∗ e cogen(t, e), d← t << 1 (t new)
e ∗ 2 cogen(t, e), d← t << 1 (t new)

e1 ⊕ e2 cogen(t1, e1), cogen(t2, e2), d← t1 ⊕ t2 (t1, t2 new)

Since ∗ is a binary operation (that is, ⊕ can be ∗), the patterns for e now need
to be matched in order to avoid ambiguity and to obtain the intended more effi-
cient implementation. If we always match the deepest pattern first at the root of
the expression, this algorithm is called maximal munch. This is also a first indica-
tion where the built-in pattern matching capabilities of functional programming
languages can be useful for implementing compilers.

Now the translation of statements is straightforward. We write cogen(s) for
the sequence of instructions implementing statement s. We assume that there is a
special return register rret so that a return instruction is translated to a move into
the return register.

s cogen(s)

t = e cogen(t, e)

return e cogen(rret, e)

Now a sequence of statements constituting a program is just translated by ap-
pending the sequences of instructions resulting from their translations. Maximal
munch is easy to implement (especially in a language with pattern matching) and
gives acceptable results in practice.

5 Optimal Instruction Selection

If we have a good cost model for instructions, we can often find better translations
if we apply dynamic programming techniques to construct instruction sequences

LECTURE NOTES AUGUST 29, 2013

Instruction Selection L2.4

of minimal cost, from the bottom of the tree upwards. In fact, one can show that
we get “optimal” instruction selection in this way if we start with tree expressions.

On modern architectures it is very difficult to come up with realistic cost mod-
els for the time of individual instructions. Moreover, these costs are not additive
due to features of modern processors such as pipelining, out-of-order execution,
branch predication, hyperthreading, etc. Therefore, optimal instruction selection is
more relevant when we optimize code size, because then the size of instructions is
not only unambiguous but also additive. Since we do not consider code-size opti-
mizations in this course, we will not further discuss optimal instruction selection.

6 x86-64 Considerations

Assembly code on the x86 or x86-64 architectures is not as simple as the assump-
tions we have made here, even if we are only trying to compile straight-line code.
One difference is that the x86 family of processors has two-address instructions,
where one operand will function as a source as well as destination of an instruction,
rather than three-address instructions as we have assumed above. Another is that
some operations are tied to specific registers, such as integer division, modulus,
and some shift operations. We briefly show how to address such idiosyncracies.

To implement a three-address instruction we replace it by a move and a two-
address instruction. For example:

3-address form 2-address form x86-64 assembly
d← s1 + s2 d← s1 MOVL s1, d

d← d+ s2 ADDL s2, d

Here we use the GNU assembly language conventions where the destination of
an operation comes last, rather than the Intel assembly language format where it
comes first.

In order to deal with operations tied to particular registers we have to make
similar transformations. It is important to keep the live range of these registers
short, so they interfere with other registers as little as possible, as explained in Lec-
ture 3 on register allocation. As an example, we consider integer division. On the
left is the simple three-address form. In the middle is a reasonable approximation
in two-address form. On the right is the actual x86 assembly.

3-address form 2-address form (approx.) x86-64 assembly
d← s1 / s2 %eax← s1 MOVL s1, %eax

CLTD

%eax← %eax / s2 IDIVL s2
|| %edx← %eax % s2
d← %eax MOVL %eax, d

LECTURE NOTES AUGUST 29, 2013

http://www.cs.cmu.edu/~fp/courses/15411-f13/lectures/03-regalloc.pdf
http://www.cs.cmu.edu/~fp/courses/15411-f13/lectures/03-regalloc.pdf

Instruction Selection L2.5

Here, CLTD sign-extends %eax into %edx. In the Intel Instruction Set Reference, this
instruction is called CDQ. This is one of relatively few places where the Intel and
GNU assembler names of instructions differ. The IDIVL s2 instruction divides the
64-bit number represented by [%edx, %eax] by s2, storing the quotient in %eax and
the remainder in %edx. Note that the IDIVL instruction will raise a division by zero
exception when s2 is 0, or if there is an overflow (if we divide the smallest 32 bit
integer in two’s complement representation, −231, by −1).

7 Extensions

In general, there will be interdependencies of instruction selection and register al-
location. The register allocation depends on which instructions are executed, es-
pecially for special instructions on x86-64. Also some of the analysis needed for
register allocation may depend on the selected instructions. Conversely, however,
optimal instructions may depend on the register assignment. For these and similar
reasons, recent advanced compilers, especially those following the so-called SSA
intermediate representation combine register allocation and code generation into a
joint phase.

Questions

1. How can you implement the data structures for an intermediate representa-
tion as defined in this lecture?

2. What are the advantages of working with a 3-address intermediate represen-
tation compared to a 2-address representation and vice versa?

3. What is the advantage and disadvantage of using macro expansion for in-
struction selection, i.e., to associate exactly one instruction sequence to each
individual piece of the intermediate language?

4. Why do many CPUs provide such an asymmetric set of instructions? Why
do they not just provide us with all useful instructions and no special register
requirements?

References

[App98] Andrew W. Appel. Modern Compiler Implementation in ML. Cambridge
University Press, Cambridge, England, 1998.

LECTURE NOTES AUGUST 29, 2013

	Introduction
	A Simple Source Language
	Abstract Assembly Target Code
	Maximal Munch
	Optimal Instruction Selection
	x86-64 Considerations
	Extensions

