
Assignment 4
Memory Layout and Polymorphism

15-411: Compiler Design
Frank Pfenning

Robbie Harwood, Sri Raghavan, Max Serrano

Due Tuesday, October 29, 2013 (1:30pm)

Reminder: Assignments are individual assignments, not done in pairs. The work must be
all your own.

You may hand in a handwritten solution or a printout of a typeset solution at the begin-
ning of lecture on Tuesday, October 29. Please read the late policy for written assignments
on the course web page. If you decide not to typeset your answers, make sure the text and
pictures are legible and clear.

ASSIGNMENT 4 TUESDAY, OCTOBER 29, 2013 (1:30PM)

Memory Layout and Polymorphism A4.2

Problem 1: Memory Layout (25 points)

Consider the following C0 source code on the left and the assembly code produced by your
compiler on the right. Note that it uses tail-call optimization to avoid a recursive call.

struct d64 { _c0_inc:

int lo32; pushq %rbx

int hi32; movq %rdi, %rbx

}; jmp L11

L7:

struct bigint { movq 12(%rbx), %rbx

bool sign; L11:

struct d64 d; movl 4(%rbx), %eax

struct bigint* next; incl %eax

}; movl %eax, 4(%rbx)

testl %eax, %eax

void inc(struct bigint* q) jne L9

//@requires q != NULL && !q->sign; movl 8(%rbx), %eax

{ incl %eax

(*q).d.lo32 += 1; movl %eax, 8(%rbx)

if ((*q).d.lo32 == 0) { testl %eax, %eax

(*q).d.hi32 += 1; jne L9

if ((*q).d.hi32 == 0) { cmpl $0, 12(%rbx)

if (q->next == NULL) jne L7

/* init’s fields appropriately */ movl $20, %esi

q->next = alloc(struct bigint); movl $1, %edi

inc(q->next); call calloc

} movq %rax, 12(%rbx)

} jmp L7

return; L9:

} popq %rbx

ret

(a) Explain why the compiler assigned variable q to the register %rbx.

(b) calloc takes arguments of type size_t, which expands to an unsigned long int

and is therefore 64 bits wide, according to the x86-64 ABI. Why is it correct to use
movl instructions instead of movq to set the argument registers?

(c) The assembly code does not conform to the x86-64 ABI. Explain why not and provide
a correction.

(d) The assembly code contains a further bug. Identify it and provide a correction. Do
not be concerned about whether the source program might have a bug; we are only
concerned with whether the assembly code correctly matches the source.

(e) We are compiling in production mode, ignoring contracts. The given assembly code
relies on OS memory protection in order to signal an error in case the argument to
_c0_inc is the null pointer 0. Insert an appropriate check in one place that avoids
relying on OS memory protection. You may assume a jump target raise_mem that
will raise the appropriate memory exception. Briefly explain the rationale for your
choice.

ASSIGNMENT 4 TUESDAY, OCTOBER 29, 2013 (1:30PM)

Memory Layout and Polymorphism A4.3

Problem 2: Polymorphism (35 points)

The C0 language provides only a very weak form of polymorphism, essentially using
struct s* in a library header, where struct s has not yet been defined. C provides a
more expressive, but inherently unsafe mechanism by allowing pointers of type void*. A
pointer of this type can reference data of any type. We then use implicit or explicit casts to
convert to and from this type. Some discussion and examples can be found in the notes on
Lecture 19 in the course on Principles of Imperative Computation. In this problem we explore
a safe version of void* which may eventually make its way into C1.

Tagging and Untagging Data

The key to making the type void∗ safe is to tag pointers of this type with their actual type.
When we cast values of this type to actual types we can then compare tags to make sure
the operation is type-safe. We have new tagging and untagging constructs

e ::= . . . | tag(τ∗, e) | untag(τ∗, e)

with the following typing rules

Γ ` e : τ∗
Γ ` tag(τ∗, e) : void∗

Γ ` e : void∗
Γ ` untag(τ∗, e) : τ∗

Tagging is always safe: we can forget that e references a value of type τ and just weaken
the type to void. Untagging will signal a runtime error if the tag of e is different from τ∗.
For example, if p : int∗ then the expression

untag(bool∗, tag(int∗, p))

will type-check, but should yield a runtime error while untagging since bool∗ 6= int∗.

A Safe Implementation

In the safe implementation, a value of type void∗will always be either null (0), or a pointer
to 16 bytes of memory on the heap. The first 8 bytes represent the actual type τ∗, the
second 8 represent the actual value of type τ∗, which must be an address. We assume we
can calculate tprep(τ∗) = w, where w is a 8-byte tag value uniquely representing the type
τ∗. The default value for type void∗ is null (0).

(a) Provide the evaluation rules for tag(τ∗, e). You should define new rules for the judg-
ments H ; η ` e ↓ v ; H ′ and H ; η ` e ↑ exn . Your rules do not need to check
whether memory is exhausted. You should also describe the evaluation of tag(τ∗, e)
informally, which will help us assign partial credit in case your rules are not com-
pletely correct.

(b) Provide the evaluation rules for untag(τ∗, e). This should fail if the tag of e does
not match τ∗, in which case you should raise a tag exception. You should define
new rules for the same two judgments as in part (a), and accompany them with an
informal description.

ASSIGNMENT 4 TUESDAY, OCTOBER 29, 2013 (1:30PM)

http://www.cs.cmu.edu/~fp/courses/15122-f12/lectures/19-poly.pdf

Memory Layout and Polymorphism A4.4

(c) Describe code generation for the tag and untag expression forms in the style we used
for arrays on page L14.7 of the lecture notes. You may use function calls

t64 ← malloc(s64)

to obtain the address t of s bytes of uninitialized memory, and use the jump target
raise_tag to signal a tag exception.

An Unsafe Implementation

The unsafe implementation should forego tag checking. As a result, we do not need to tag
or untag at all, since we trust the programmer that tags would have been correct. In other
words, tag(τ∗, e) would be like (void*)e in C, and untag(τ∗, e) like (tau*)e, relevant only
at the type-checking phase.

(d) Explain why compiling e1 == e2 for pointers e1 and e2 to a naive pointer comparison
is not always correct in safe mode.

(e) Explain how to compile e1 == e2 in both safe and unsafe modes so that program
behavior is the same for both modes (assuming, of course, that the program is indeed
safe and will not raise an exception).

ASSIGNMENT 4 TUESDAY, OCTOBER 29, 2013 (1:30PM)

