
15-411 Compiler Design: Lab 6 - LLVM

Fall 2008

Instructor: Frank Pfenning
TAs: Rob Arnold and Eugene Marinelli

Compilers due: 11:59pm, Thursday, December 4, 2008
Term Paper due: 11:59pm, Thursday, December 11, 2008

1 Introduction

The main goal of the lab is to explore advanced aspects of compilation. This writeup describes
the option of retargeting the compiler to generate LLVM code; other writeups detail the option
of implementing garbage collection or optimizing the generated code. The language L5 does not
change for this lab and remains the same as in Lab 5.

2 Requirements

You are required to hand in two separate items: (1) the working compiler and runtime system, and
(2) a term paper describing and critically evaluating your project.

3 Tests

You are not required to hand in new tests. The autograder will use a subset of the tests from the
previous labs to test your compiler.

4 Compilers

Your compilers should treat the language L5 as in Lab 5, including extern declarations. While we
encourage you to continue to support both safe and unsafe compilation, but it complies with the
specification if the potentially unsafe implementation is simply the safe one.

When generating code for the LLVM, given file name.l5, you compiler should generate at least
two files: name.ll, which is in the LLVM human-readable assembly language, and name.s, the
x86-64 assembly language. Translation from the former to the latter is likely in at least two stages,
first generating an intermediate byte code file name.bc with llvm-as and then name.s by using
llc (see the LLVM documentation).

1



5 What to Turn In

On the Autolab server, the hand-in and status pages for the optimization and garbage collection
projects are separated, since different drivers will be employed.

Compiler Files (due 11:59pm on Thu Dec 4)

As for all labs, the files comprising the compiler itself should be collected in a directory compiler/
which should contain a Makefile. Important: You should also update the README file and insert
a roadmap to your code. This will be a helpful guide for the grader.

Issuing the shell command

% make l5c

should generate the appropriate files so that

% bin/l5c --safe --llvm <args>
% bin/l5c --unsafe --llvm <args>
% bin/l5c --safe --x86_64 <args>
% bin/l5c --unsafe --x86_64 <args>

will run your L5 compiler in safe and unsafe modes, generating LLVM or direct x86-64 native code,
respectively. For backwards compatibility, the default is --unsafe --x86_64

The command

% make clean

should remove all binaries, heaps, and other generated files.

Using the Subversion Repository

The recommended method for handout and handin is the course subversion repository.
The handout files for this course can be checked out from our subversion repository via

% svn checkout https://cvs.concert.cs.cmu.edu/15-411/<team>

where <team> is the name of your team. You will find materials for this lab in the lab6llvm
subdirectory. Or, if you have checked out 15-411/<team> directory before, you can issue the
command svn update in that directory.

After first adding (with svn add or svn copy from a previous lab) and committing your handin
directory (with svn commit) to the repository you can hand in your tests or compiler by selecting

S5b - Autograde your code in svn repository

from the Autolab server menu. It will perform

% svn checkout https://cvs.concert.cs.cmu.edu/15-411/<team>/lab6llvm/compiler

to obtain the files directories to autograde, depending on whether you are handing in your test files
or your compiler.

If you are submitting multiple versions, please remember to commit your changes to the repos-
itory before asking the Autolab server to grade them! And please do not include an compiled files
or binaries in the repository!

2



Uploading tar Archives

A deprecated method for handout and handin is the download and upload of tar archives from the
Autolab server.

For the test cases, bundle the directory tests as a tar file tests.tar with

% tar -cvf tests.tar tests/

to be submitted via the Autolab server.
For the compiler, bundle the directory compiler as a tar file compiler.tar. In order to keep

the files you hand in to a reasonable size, please clean up the directory and then bundle it as a tar
file. For example:

% cd compiler
% make clean
% cd ..
% tar -cvf compiler.tar --exclude CVS compiler/

to be submitted via the Autolab server. Please do not include any compiled files or binaries in your
hand-in file!

Term Paper (due 11:59 on Thu Dec 11)

You need to describe your implemented compiler and critically evaluate it in a term paper of about
10 pages. You may use more space if you need it. The recommended outline varies depending on
your project. Submit a file <team>-llvm.pdf via email to the instructor at fp@cs.

Your paper should follow this outline.

1. Introduction. This should provide an overview of your implementation and briefly summarize
the results you obtained.

2. Comparison. Compare compilation to LLVM, followed by native code generate with direct
native code generation. How does the structure of your compiler differ? How does the
generated code differ? If you are applying optimizations at the LLVM level, describes those
optimizations and their rationale.

3. Analysis. Critically evaluate the results of your compiler via LLVM, which could include size
and speed of the generated code. You might find the driver for the optimization lab lab6opt
to be useful for this purpuse. Also provide an evaluation of LLVM: how well did it serve your
purpose? What might be improved?

6 Notes and Hints

• Apply regression testing. It is very easy to get caught up in writing a back end for a new
target. Please make sure your native code compiler continues to work correctly!

• Read the assembly code. Just looking at the assembly code that your compiler produces will
give you useful insights into what you may need to change.

3


