
15-411 Compiler Design: Lab 2

Fall 2008

Instructor: Frank Pfenning
TAs: Rob Arnold and Eugene Marinelli

Test Programs Due: 11:59pm, Tuesday, September 23, 2008
Compilers Due: 11:59pm, Tuesday, September 30, 2008

1 Introduction

The goal of the lab is to implement a complete compiler for the language L2 . This language extends
L1 by conditionals, loops, and some additional operators. This means you will have to change all
phases of the compiler from the first lab. One can write some interesting iterative programs over
integers in this language. Correctness is still paramount, but performance starts to become a minor
issue because the code you generate will be executed on a set of test cases with preset time limits.
These limits are set so that a correct and straightforward compiler without optimizations should
receive full credit.

2 Requirements

As for Lab 1, you are required to hand in test programs as well as a complete working compiler that
translates L2 source programs into correct target programs written in x86-64 assembly language.
When encountering an error in the input program (which can be a lexical, grammatical, or static
semantics error) the compiler should terminate with a non-zero exit code and print a helpful error
message. To test the target programs, we will assemble and link them using gcc on the lab machines
and run them under fixed but generous time limits.

3 L2 Syntax

The syntax of L2 is defined by the context-free grammar in Figure 1. Ambiguities in this grammar
are resolved according to the operator precedence table in Figure 2 and the rule that an else
provides the alternative for the most recent eligible if.

Comments

L2 source programs may contain C-style comments of the form /* ... */ for multi-line comments
and // for single-line comments. Multi-line comments may be nested (and of course the delimiters
must be balanced). Also, # should be considered as starting a single-line comment as such lines
will be used as directives for testing and possibly other uses later in the class.
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〈program〉 ::= { 〈stmt〉∗ }

〈stmt〉 ::= 〈simp〉 ; | 〈control〉 | ;

〈simp〉 ::= 〈ident〉 〈asop〉 〈exp〉

〈control〉 ::= if ( 〈exp〉 ) 〈block〉 [ else 〈block〉 ] |

while ( 〈exp〉 ) 〈block〉 | for ( [ 〈simp〉 ] ; 〈exp〉 ; [ 〈simp〉 ] ) 〈block〉 |

continue ; | break ; | return 〈exp〉 ;

〈block〉 ::= 〈stmt〉 | { 〈stmt〉∗ }

〈exp〉 ::= ( 〈exp〉 ) | 〈intconst〉 | 〈ident〉 | 〈unop〉 〈exp〉 | 〈exp〉 〈binop〉 〈exp〉

〈ident〉 ::= [A-Z a-z][0-9A-Z a-z]∗

〈intconst〉 ::= [0-9][0-9]∗ (in the range 0 ≤ intconst < 232)

〈asop〉 ::= = | += | -= | *= | /= | %= | &= | ^= | |= | <<= | >>=

〈binop〉 ::= + | - | * | / | % | < | <= | > | >= | == | !=

| && | || | & | ^ | | | << | >>

〈unop〉 ::= ! | ~ | -

The precedence of unary and binary operators is given in Figure 2.
Non-terminals are in 〈angle brackets〉, optional constituents in [brackets].
Terminals are in bold.

Figure 1: Grammar of L2
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Operator Associates Meaning

() n/a explicit parentheses

! ~ - right logical not, bitwise not, unary minus

* / % left integer times, divide, modulo

+ - left integer plus, minus

<< >> left (arithmetic) shift left, right

< <= > >= left integer comparison

== != left integer equality, disequality

& left bitwise and

^ left bitwise exclusive or

| left bitwise or

&& left logical and

|| left logical or

= += -= *= /= %= &= ^= |= <<= >>= right assignment operators

Figure 2: Precedence of operators, from highest to lowest

4 L2 Static Semantics

Reserved words of the grammar (if, else, while, for, continue, break, return) cannot be used
as variable names.

Regarding control flow, several properties must be checked.

• Each (finite) control flow path through the program must terminate with an explicit return
statement. This ensures that the program does not terminate with an undefined value.

• Each break or continue statement must occur inside a while or for loop.

Regarding variables, we need to check one property.

• On each control flow path through the program, each variable must be defined by an as-
signment before it is used. This ensures that there will be no references to uninitialized
variables.

In order to rigorously define the two static checks related to control flow, we postulate abstract
syntax trees for statements s according to

s ::= assign(x, e) | if(e, s, s) | while(e, s) | continue | break | return(e) | nop | seq(s,s)

where e stands for an expression and x for an identifier. Do not be confused by the fact that
this looks like a grammar: the terms on the right hand side describe trees, not strings. Your
implementation may of course differ from this—we use this merely as a means of specifying when
programs are well-formed. We assume here that for loops have been rewritten to equivalent while
loops according to the transformation described in the comments on the dynamic semantics below,
and similarly for compound assignments such as +=.
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The whole program is represented here as a single statement s, because a sequence of statements
{s1; s2; . . .} is represented as a single statement seq(s1, seq(s2, . . .)). In an implementation it may
be more convenient to use lists explicitly.

Checking Proper Returns

We check that all finite control flow path through a program end with an explicit return statement.
We say that s returns if executing s, if it terminates, will always end with a return statement.
Overall, we want to ensure that the whole program, represented as a single statement s, returns
according to this definition. If not, the compiler must signal an error.

assign(x, e) does not return
if(e, s1, s2) returns if both s1 and s2 return
while(e, s) does not return
return(e) returns
nop does not return
seq(s1, s2) returns if either s1 returns (and therefore s2 is dead code) or s2 returns

We do not look inside loops (even though the bodies may contain return statements) because the
body might not be executed at all. Because we do not look inside loops, we do not need rules for
break or continue.

Checking Variable Initialization

We check that along all control flow paths, any variable is defined before use. First, we specify
when a statement s defines a variable x. We read this as: Whenever s finishes normally, it will
have defined x. This excludes cases where s returns, executes a break or continue statement, or
does not terminate.

assign(x, e) defines only x
if(e, s1, s2) defines x if both s1 and s2 define x
while(e, s) defines no x (because the body may not be executed)
break defines all x (because it does not finish normally)
continue defines all x (because it does not finish normally)
return(e) defines all x (because it does not finish normally)
nop defines no x
seq(s1, s2) defines x if either s1 or s2 does

We also say that an expression e uses a variable x if x occurs in e. In our language, e may have
logical operators which will not necessarily evaluate all their arguments, but we still say that a
variable occurring in such an argument is used.

We now define which variables are live in a statement s, that is, their value may be used in the
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execution of s.

y is live in assign(x, e) if y is used in e
y is live in if(e, s1, s2) if y is live in s1 or s2

y is live in while(e, s) if y is used in e or live in s
y is live in break never (the jump target is accounted for elsewhere)
y is live in continue never (the jump target is accounted for elsewhere)
y is live in return(e) if y is used in e
y is live in nop never
y is live in seq(s1, s2) if y is live in s1

or y is live in s2 and not defined in s1

Static analysis should reject a program s if there is any variable y that is live in s.
This definition is based on the static control flow graph. For example, the program

{ return 1; x = y + 1; }

is valid because the statement x = y + 1 can not be reached along any control flow path from
the beginning of the program. Formally, the statement return 1 is taken to define all variables,
including y, so that y is not live in the whole program even though it is live in the second statement.

The restriction on return statements and initializing variables guarantee that the meaning of
every valid program is deterministic: it will either return a unique value, raise a div exception, or
fail to terminate.

5 L2 Dynamic Semantics

In most cases, statements have the familiar operational semantics from C. Conditionals, for, and
while loops execute as in C. continue skips the rest of the statements in a loop body and break
jumps to the first statement after a loop. As in C, when encountering a continue inside a for
loop, we jump to the step statement. Both break and continue always apply to the innermost
loop they occur in.

We recommend expanding a for loop into a corresponding while loop. This expansion will
streamline your compiler and also make static analysis much easier. Briefly,

for (sinit ; e ; sstep) sbody

becomes
sinit ; while (e) {s′

body ; sstep}

where s′
body is the result of replacing any occurrence of continue in sbody referring to this loop by

sstep ; continue.
The meanings of the special assignment operators are as in L1 , where x op= e is the same as

x = x op e.

Integer Operations

Since expressions do not have effects (except for a possible div exception that might be raised) the
order of their evaluation is irrelevant.

The integers of this language are signed integers in two’s complement representation with a
word size of 32 bits. The semantics of the operations is given by modular arithmetic as in L1 .
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Recall that division by zero and division overflow must raise a runtime division exception. This is
the only runtime exception that should be possible in the language, except for those defined by the
runtime environment such as stack overflow.

The left << and right >> shift operations are arithmetic shifts. Since our numbers are signed,
this means the right shift will copy the sign bit in the highest bit rather than filling with zero. Left
shifts always fill the lowest bit with zero. Also, the shift quantity k will be masked to 5 bits and is
interpreted positively so that a shift is always between 0 and 31 bits, inclusively. This is also the
hardware behavior of the appropriate arithmetic shift instructions on the x86-64 architecture and
is consistent with C where the behavior is underspecified.

The comparison operators <, <=, >, >=, ==, and != have their standard meaning on signed
integers as in the definition of C.

Logical Operators

The operators &&, || and ! are the so-called logical operators. They interpret an argument of 0
as false and non-zero as true, and always produce either 0 (for false) or 1 (for true). A tricky
aspect of logical and (&&) and logical or (||) is they evaluate their arguments from left to right and
short-circuit evaluation if the left-hand operand yields 0 (for logical and) and 1 (for logical or). In
those cases, they do not evaluate their second operand and return 0 (for logical and) and non-zero
(for logical or). Your implementation must model this semantics faithfully.

Runtime Environment

As in the first lab, your target code will be linked against a very simple runtime environment.
It contains a function main() which calls a function _l2_main() that your assembly code should
provide and export. This function should return a value in %eax or raise an exception, according to
the language specification. It must also preserve all callee-save registers so that our main function
can work correctly. Your compiler will be tested in the standard Linux environment on the lab
machines; the produced assembly must conform to this environment.

6 Project Requirements

For this project, you are required to hand in test cases and a complete working compiler for L2
that produces correct target programs written in Intel x86-64 assembly language. When we grade
your work, we will use the gcc compiler to assemble and link the code you generate into executables
using the provided runtime environment on the lab machines.

Test Files

Test files should have extension .l2 and start with one of the following lines

#test return i program must execute correctly and return i
#test exception program must compile but raise a runtime exception
#test error program must fail to compile due to a L2 source error

followed by the program text. All test files should be collected into a directory test/ (containing
no other files) and submitted via the Autolab server.

We would like some fraction of your test programs to compute “interesting” functions on specific
values; please briefly describe such examples in a comment in the file. Disallowed are programs
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computing Fibonacci numbers, factorials, greatest common divisors, and minor variants thereof.
Please use your imagination!

Compiler Files

The files comprising the compiler itself should be collected in a directory compiler/ which should
contain a Makefile. Important: You should also update the README file and insert a description
of your code and algorithms used at the beginning of this file. This will be a crucial guide for the
grader.

Issuing the shell command

% make l2c

should generate the appropriate files so that

% bin/l2c <args>

will run your L2 compiler. The command

% make clean

should remove all binaries, heaps, and other generated files.

Using the Subversion Repository

The recommended method for handout and handin is the course subversion repository.
The handout files for this course can be checked out from our subversion repository via

% svn checkout https://cvs.concert.cs.cmu.edu/15-411/<team>

where <team> is the name of your team. You will find materials for this lab in the lab2 subdi-
rectory. Or, if you have checked out 15-411/<team> directory before, you can issue the command
svn update in that directory.

After adding and committing your handin directory to the repository with svn add and svn commit
you can hand in your tests or compiler by selecting

S5b - Autograde your code in svn repository

from the Autolab server menu. It will perform one of

% svn checkout https://cvs.concert.cs.cmu.edu/15-411/<team>/lab2/tests
% svn checkout https://cvs.concert.cs.cmu.edu/15-411/<team>/lab2/compiler

to obtain the files directories to autograde, depending on whether you are handing in your test files
or your compiler.

If you are submitting multiple versions, please remember to commit your changes to the repos-
itory before asking the Autolab server to grade them! And please do not include an compiled files
or binaries in the repository!
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Uploading tar Archives

A deprecated method for handout and handin is the download and upload of tar archives from the
Autolab server.

For the test cases, bundle the directory tests as a tar file tests.tar with

% tar -cvf tests.tar tests/

to be submitted via the Autolab server.
For the compiler, bundle the directory compiler as a tar file compiler.tar. In order to keep

the files you hand in to a reasonable size, please clean up the directory and then bundle it as a tar
file. For example:

% cd compiler
% make clean
% cd ..
% tar -cvf compiler.tar --exclude CVS compiler/

to be submitted via the Autolab server. Please do not include any compiled files or binaries in your
hand-in file!

What to Turn In

Hand in on the Autolab server:

• At least 20 test cases, at least two of which generate as error and at least two others raise a
runtime exception. The directory tests/ should only contain your test files and be submitted
via subversion or as a tar file as described above. The server will test your test files and
notify you if there is a discrepancy between your answer and the outcome of the reference
implementation. You may hand in as many times as you like before the deadline without
penalty. If you feel the reference implementation is in error, please notify the instructors.
The compiled binary for each test case should run in 2 seconds with the reference compiler
on the lab machines; we will use a 5 second limit for testing compilers.

Test cases are due 11:59pm on Tue Sep 23, 2008.

• The complete compiler. The directory compiler/ should contain only the sources for your
compiler and be submitted via subversion or as a tar file as described above. The Autolab
server will build your compiler, run it on all extant test files, link the resulting assembly files
against our runtime system (if compilation is successful), execute the binaries (each with a 5
second time limit), and finally compare the actual with the expected results. You may hand
in as many times as you like before the deadline without penalty.

Compilers are due 11:59pm on Tue Sep 30, 2008.

7 Notes and Hints

Static Checking

The specification of static checking should be implemented on abstract syntax trees, translating
the rules into code. You should take some care to produce useful error messages.
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It may be tempting to wait until liveness analysis on abstract assembly to see if any variables are
live at the beginning of the program and signal an error then, rather than checking this directly on
the abstract syntax tree. There are two reasons to avoid this: (1) it may be difficult or impossible
to generate decent error messages, and (2) the intermediate representation might undergo some
transformations (for example, optimizations, or transforming logical operators into conditionals)
which make it difficult to be sure that the check strictly conforms to the given specification.

Calling Conventions

Your code must strictly adhere to the x86-64 calling conventions. For this lab, this just means that
your _l2_main function must make sure to save and restore any callee-save registers it uses, and
that the result must be returned in %eax.

Shift Operators

There are some tricky details on the machine instructions implementing the shift operators. The
instructions sall k, D (shift arithmetic left long) and sarl k, D (shift arithmetic right long) take
a shift value k and a destination operand D. The shift either has to be the %cl register, which
consists of the lowest 8 bits of %rcx, or can be given as an immediate of at most 8 bits. In either
case, only the low 5 bits affect the shift of a 32 bit value; the other bits are masked out. The
assembler will fail if an immediate of more than 8 bits is provided as an argument.

Run-time Environment

The tests will be run in the standard Linux environment on the lab machines; the produced assembly
code must conform to those standards. We recommend the use of gcc -S to produce assembly files
from C sources which can provide template code and assembly language examples.

If your compiler detects any (compile-time) errors in the source program, it should exit with
a non-zero return code. If compilation succeeds and target code is generated, the compiler should
then exit with a return code of 0.

Good Coding Practices

Please remember that your code will be read and graded by the instructor or a teaching
assistant. This means your code must be readable. This also means that the code should be broken
up along natural module boundaries. Some specific pieces of advice are listed below. As usual,
such generalizations have to be taken with a grain of salt, but we hope they may still be useful.

• Every structure should have a signature which determines its interface.

• Seal structures by ascribing signatures with ‘:>’ and not ‘:’. The latter might accidentally
leak private information about the structure.

• Use functors only when you instantiate them more than once.

• Format your code to a line width of no more than 100 characters.

• Tabs, if used at all, should have a standard width of 8.
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• Do not use open LongStructureName because the reader will then be unable to tell where
identifiers originate. It can also lead to unfortunate shadowing of names. Instead, use, for
example, structure L = LongStructureName inside a structure body and qualify identifiers
with ‘L.’.

• Use variable names consistently.

• Use comments, but do not clutter the code too much where the meaning is clear from context.

• Avoid excessive uses of combinators such as foldl and foldr. They tend to be easier to
write than to read and understand.

• Develop techniques for unit testing, that is, testing modules individually. This helps limit the
problem of nasty end-to-end bugs that are very difficult to track.

• Do not prematurely optimize. Write clear, simple code first and optimize only as necessary,
when bottlenecks have been identified. Compiler speed is not a grading criterion!

• Do not prematurely generalize. Solve the problem at hand without looking ahead too much at
future labs. Such generalizations are unlikely to simplify later coding because it is generally
very difficult to anticipate what might be needed. Instead, they may make the present code
harder to follow because of unmotivated pieces.

• Be clear about the data structures and algorithms you want to implement before starting to
write code.
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