Assignment 3
Pointers and Program Analysis

15-411: Compiler Design
Rob Arnold (rdarnold@andrew) and Eugene Marinelli (emarinel@andrew)

Due: Thursday, October 9, 2008 (1:30 pm)

Reminder: Assignments are individual assignments, not done in pairs. The work must be all your own.

You may hand in a handwritten solution or a printout of a typeset solution at the beginning of lecture
on Thursday, October 9. Please read the late policy for written assignments on the course web page. If you
decide not to typeset your answers, make sure the text and pictures are legible and clear.

Problem 1
[15 points]

As discussed in class, constant propagation can be performed by first computing reaching definitions.
However, it is also possible to perform constant propagation directly as a forward dataflow analysis. In this
problem, we will explore a sort of constant propagation for pointer values, keeping track of some information
about the value that a pointer variable x may have.

We write val(l, z, V) if the value of the pointer variable x at line [in the programs may be V', where V is
either NULL or INULL. This means we don’t track the precise value (which would be impossible), but only
a sound approximation of the possible values of x at line [. As in Lectures 4 and 5, we mean the value of x
before the statement at line [is executed.

The val predicate is seeded at assignments according to the following rules.

l:x—e
l:z — NULL e # NULL [: 2« alloc(k)
succ(l,1") succ(l, 1) succ(l,1")
val(l’, z, NULL) val(l’, z, NULL) val(I’, z, INULL)

val(l’, z, INULL)

In the middle rule we have two conclusions, because we cannot predict the value of e in this simple analysis
and so x may be null or it may not be null. In the right rule, we exploit that if alloc returns it gives us a
non-null pointer; failure to allocate would be signaled as an exception.

a. Complete the specification of the analysis by writing rules to propagate value information throughout
the program. You may assume the language and predicates are as in notes to Lecture 5 on dataflow
analysis.

b. If z is a function parameter, how do we define val of x at [y, the beginning of the function body?

c. Suppose {V | val(l,z,V)} = {}. What does this mean about a use of = at {?

We can use the approximate value information for optimization in the following ways:

o If {V |val(l,z,V)} = {NULL} we can replace uses of = at line 2 by NULL, because NULL is the only
value x can have at [.

e We can evaluate some pointer comparisons if both sides are either constant or known to be only null
or non-null. For example, if {V | val(l,z,V)} = {NULL} and {V | val(l,y,V)} = {INULL} then the
expression x ==y can be replaced by 0.

Now consider the program

lo : z+ NULL

Iy : y<« alloc(4)

lo @ if (y==2) goto Iy
ls : y«<— NULL

i+ be—(y==2)

ls : returnbd

d. Compute the possible values V' of y and z at each line.

e. Using these values, perform the constant propagation and constant folding optimizations described
above.

Problem 2
[10 points]

In the previous problem, we are not fully exploiting our knowledge about the values of the variables
because the conditional branch remains. More generally, for common tests such as

[:if (z==NULL) goto I

we should be able to conclude that z is NULL at I’ and z is INULL at [+ 1. An analysis that captures this
phenomenon is called flow sensitive.

g. Extend and/or modify your set of rules from Problem 1 so that the analysis is now flow sensitive.

h. Compute the possible approximate values V of z in the following program with your analysis. It should
be strong enough to show that the dereference of x cannot yield a null pointer exception. Assume g is
an unknown function.

lo @ x+« g(3429)

I, : if (z==NULL) goto Iy
lo : y«— Mz

l3 : gotols
ly + y<0
ls : returny

Problem 3
[10 points]
Return to the (flow-insensitive) analysis in Problem 1. The basic predicate here is val(l, z, V'), which talks

about the possible values for x at location [. If the program were written in static single-assignment (SSA)
form, then each variable would be defined at a unique line of the program. Therefore, it is not necessary

to track both line [and variable x and we can instead write rules to reason about a two-place predicate
val(z, V).

Rewrite the rules from your solution to Problem 1 to specify a val(z, V'), assuming the program is in SSA
form.

Hint: While there is some simplification you must now handle the case [: x «— ¢(z1,...,zy).

Problem 4
[10 points]

Assume that you are working with C. Consider the function alloca(int nbytes) which allocates
dynamic memory on the stack.

The implementation of alloca() on x86-32 is easy, since it maintains both a stack pointer and base
pointer in dedicated registers. Whenever a function returns to its caller, it automatically frees the memory
allocated by alloca() with the standard function epilogue.

On other architectures, such as the PowerPC, there is no dedicated base pointer, and only a stack pointer.
On x86-64 the base pointer is optional. On function entry, the stack pointer is decremented by a fixed amount
(determined at compile-time), to hold local variables. Variables are referenced by offsets relative to the stack,
and the function returns by incrementing the stack pointer the same amount it was decremented.

Clearly, this makes implementing alloca() more difficult. Changing the stack pointer means that the
code can no longer access local variables correctly, since the amount of change to the stack pointer is not
known at compile time.

Despite these problems, you want to still support alloca() on PowerPC mostly because your favorite
version control software, Subversion, depends on it.

There are two ways to implement alloca() in this situation.

a. You can change your compiler to generate special code for functions in which alloca() is called.
Describe in detail how to implement this option.

b. You can implement alloca() as a library function which approximates alloca() using malloc() and
free(). Here, you may not rely on garbage collection. “Approximating” alloca() means that you
should try to structure your solution so that the allocated space is freed as soon as you can safely do
so from within the alloca() function. Describe in detail how to implement this option.

Problem 5
[15 points]

In Java, all allocations take place on a garbage collected heap. As you know, stack allocation can be
much faster that a garbage-collected allocation. If the lifetime of an allocation can be determined by the
compiler, then it can go on the stack rather than the heap. In Java, each object has synchronization methods
so it is also useful to determine if an object escapes to another thread. This is called escape analysis.

a. Starting with the IL introduced in the dataflow analysis notes, add a new statement z « alloc(y)
which allocates a block of y bytes and stores a pointer to that block into x. Design formulas and rules
for tracking which variables hold pointers to a stack-allocated block. For simplicity, you may pretend
there is no pointer arithmetic allowed. We recommend that you use SSA form, as in Problem 3, but
you are not required to do so.

b. Present formulas and rules for tracking if a given allocation escapes the current function. Remember
that there are memory stores and your function may have parameters. Assume any pointer parameters
have “escaped” since they are not local to the function’s stack frame.

c. Write two functions with allocation in this IL. They should include a conditional. Write them such
that some allocation(s) escape and others do not and illustrate your analysis by annotating lines with
the information you can infer.

