
Assignment 1

Instruction Selection and Register Allocation
Sample Solution

15-411: Compiler Design
Rob Arnold (rdarnold@andrew) and Eugene Marinelli (emarinel@andrew)

Due: Tuesday, September 9, 2008 (1:30 pm)

Note: Instruction orders, register and temporary numberings, and interference graphs may be different
but still correct depending on how the algorithms are carried out. This document serves as a correct example.

Reminder: Assignments are individual assignments, not done in pairs. The work must be all your own.
You may hand in a handwritten solution or a printout of a typeset solution at the beginning of lecture

on Tuesday, September 9. Please read the late policy for written assignments on the course web page. If
you decide not to typeset your answers, make sure the text and pictures are legible and clear.

In this assignment you will generate machine code to evaluate a simple arithmetic expression, carrying
out some non-trivial compilation steps. The expression is

{ return (7 + 3 * (8 - 2)) - 4 * (9 + 5); }

Problem 1 (20 points)

(a) Construct an abstract syntax tree (AST) corresponding to the expression. For example, the AST for
the expression

{ return 1 + 2; }

would be represented as1:

RETURN

+

CONST(1) CONST(2)
1The LATEX graph library used to generate these trees can be found at http://www.cs.umu.se/~drewes/graphs/. The library

apparently doesn’t work with pdflatex. You can work around this using latex and dvipdf, for example.

1

RETURN

−

−

+

+

∗

∗CONST(7)

CONST(3)

CONST(8) CONST(2)

CONST(4)

CONST(9) CONST(5)

(b) Translate the AST from problem 1(a) into linear three-address form by applying maximal munch using
the tiles in the table below. Temporaries should be called t0, t1, ..., tn.

Tile IR

CONST(n) ti <- n;

RETURN return ti;

+ ti <- tj + tk;

- ti <- tj - tk;

* ti <- tj * tk;

For example, the AST from part (a) would be translated to

t0 <- 1;

2

t1 <- 2;

t2 <- t0 + t1;

return t2;

t0 <- 7;

t1 <- 3;

t2 <- 8;

t3 <- 2;

t4 <- t2 - t3;

t5 <- t1 * t4;

t6 <- t0 + t5;

t7 <- 4;

t8 <- 9;

t9 <- 5;

t10 <- t8 + t9;

t11 <- t7 * t10;

t12 <- t6 - t11;

return t12;

Problem 2 (20 points)

(a) Compute the live variables after each statement in the program generated in problem 1b.

The result in returned in r0.
Line Live-in temps
t0 <- 7; .
t1 <- 3; t0

t2 <- 8; t0, t1

t3 <- 2; t0, t1, t2

t4 <- t2 - t3; t0, t1, t2, t3

t5 <- t1 * t4; t0, t1, t4

t6 <- t0 + t5; t0, t5

t7 <- 4; t6

t8 <- 9; t6, t7

t9 <- 5; t6, t7, t8

t10 <- t8 + t9; t6, t7, t8, t9

t11 <- t7 * t10; t6, t7, t10

t12 <- t6 - t11; t6, t11

return t12; t12

r0

(b) Construct the interference graph. Is it chordal2?

The graph is chordal.

2Refer to the lecture notes for Lecture 3 at http://www.cs.cmu.edu/~fp/courses/15411-f08/lectures/03-regalloc.pdf.

3

r0

t8

t9

t6

t7

t4

t5

t2

t3

t0

t1

t10

t11

t12

(c) Reorder the statements so that the program gives the same result, but there is less interference (i.e.,
fewer registers are needed), or state that the instruction order is already optimal in this sense. If it is
already optimal, you only need to show one answer each for parts (d) and (e).

The result in returned in r0.
Line Live-in temps
t2 <- 8; .
t3 <- 2; t2

t4 <- t2 - t3; t2, t3

t1 <- 3; t4

t5 <- t1 * t4; t1, t4

t0 <- 7; t5

t6 <- t0 + t5; t0, t5

t8 <- 9; t6

t9 <- 5; t6, t8

t10 <- t8 + t9; t6, t8, t9

t7 <- 4; t6, t10

t11 <- t7 * t10; t6, t7, t10

t12 <- t6 - t11; t6, t11

return t12; t12

r0

r0

t8

t9

t6

t7t4 t5

t2

t3

t0t1

t10

t11

t12

4

(d) Construct elimination orders using maximal cardinality search for each of the two interference graphs.
If the algorithm has a choice, list the lowest-numbered temporary first.

Original

t0, t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11, t12

Reordered

t0, t5, t1, t4, t2, t3, t6, t7, t10, t8, t9, t11, t12

(e) Use greedy coloring to allocate registers for both the original program and the reordered program.
Label the registers r0, r1, ..., rn.

Original

Temp Register
t0 r0

t1 r1

t2 r2

t3 r3

t4 r3

t5 r1

t6 r0

t7 r1

t8 r2

t9 r3

t10 r3

t11 r1

t12 r0

Reordered
Temp Register
t0 r0

t5 r1

t1 r0

t4 r1

t2 r0

t3 r1

t6 r0

t7 r1

t10 r2

t8 r1

t9 r2

t11 r1

t12 r0

Problem 3 (20 points)

(a) Translate the program from the AST in problem 1(a) into an ABI-conformant3 x86-64 assembly rou-
tine, selecting instructions and allocating the registers using an algorithm of your choosing. Describe
briefly which algorithm you used. Use the general-purpose x86-64 registers4 and beware the calling
conventions. Assume that all arithmetic is done on signed 64-bit integers. It should be possible to
assemble your functions using the GNU assembler. The function should be callable using the following
C prototype:

3Refer to http://www.x86-64.org/documentation/abi.pdf.
4Refer to page 7 of http://www.cs.cmu.edu/~fp/courses/15411-f08/misc/asm64-handout.pdf.

5

extern long ass1a();

Instructions selection: Maximal munch similar to 1b, but using x86-64 instructions and load-
ing constants into registers just before they are needed for an operation. Register allocation:
Greedy coloring on simplicial elimination ordering as in 2e.

.globl ass1a

ass1a:

movq $8, %rax

movq $2, %rcx

subq %rcx, %rax

movq %rax, %rcx

movq $3, %rax

imulq %rax, %rcx

movq $7, %rax

addq %rcx, %rax

movq $9, %rcx

movq $5, %rdx

addq %rcx, %rdx

movq $4, %rcx

imulq %rdx, %rcx

subq %rcx, %rax

ret

(b) Handwrite assembly code using only mov, addq, imulq, subq, and ret instructions which uses as few
instructions as possible and carries out the required operations. You should not use any laws of modular
arithmetic such as commutativity, associativity, or distributivity to optimize the computation, and you
should not use constant folding, that is, all operations should be performed at runtime. It should be
callable as

extern long ass1b();

.globl ass1b

ass1b:

movq $5, %rdi

addq $9, %rdi

imulq $4, %rdi

movq $8, %rax

subq $2, %rax

imulq $3, %rax

addq $7, %rax

subq %rdi, %rax

ret

(c) How many instructions appear in the systematically constructed assembly code, and how many in-
structions does your hand-crafted code have? Explain why you believe your code to be optimal, under
the given constraints. Do you believe your code also uses the minimal number of necessary registers?
Explain why or why not.

The systematically generated code has 15 instructions. The hand-crafted code has 9 instruc-
tions. The hand-crafted code is optimal under the given constraints because at least one
instruction is needed for each of the six arithmetic operations, one instruction is needed for
the return, and one mov is needed to compute each of the two non-trivial terms (3 * (8 -

2) and 4 * (9 + 5)).

6

