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Operationalizing inference rules in a computer program for proof checking or
proof search is an important skill. In this tutorial, we will explain and demonstrate
some basic techniques for implementing forward and backward inference in the LCF
style [2, 4, 3].

When implementing a logical system in a programming language, it is important to
understand and minimize the size of the portion of this system which must be “trusted”,
i.e. on which the correctness of the implementation depends. �is is usually achieved
by designing a trusted kernel with an abstract type together with some operations for
constructing elements of that type; then, the only way to produce an object of this
type is by calling the provided functions.

An LCF kernel consists in such an abstract type proof, together with functions
which construct proofs according to the rules of inference of the logic. �en, you can
use any programming techniques you want (even unsafe ones) to produce proofs, and
any such proof which is actually produced is guaranteed to be correct relative to the
correctness of the kernel.

1 Representing Syntax
�e syntax of propositions and sequents in represented in SML using datatypes. For
instance, we can represent the syntax of propositional logic as follows:

datatype prop =

TRUE (* > *)

| FALSE (* ⊥ *)

| ATOM of string (* A *)

| CONJ of prop * prop (* A ∧B *)

| DISJ of prop * prop (* A ∨B *)

| IMPL of prop * prop (* A ⊃ B *)

It is o�en convenient to use in�x notation in SML for the connectives; but note
that you need to declare the �xity of these operators.

datatype prop =

TRUE (* > *)

| FALSE (* ⊥ *)
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| ` of string (* A *)

| /\ of prop * prop (* A ∧B *)

| \/ of prop * prop (* A ∨B *)

| ~> of prop * prop (* A ⊃ B *)

infixr 3 ~>

infixr 4 /\ \/

Contexts are represented as lists of propositions, and we represent sequents as a
context together with a proposition:

type context = prop list

datatype sequent = ===> of context * prop (* Γ =⇒ A *)

infixr 0 ===>

Example 1.1 (Structural recursion). Using pa�ern matching in SML, we can write
a function that processes the syntax of propositions. Here is such a function which
counts how deep a proposition is:

val rec depth =

fn TRUE => 0

| FALSE => 0

| `_ => 0

| a /\ b => Int.max (depth a, depth b) + 1

| a \/ b => Int.max (depth a, depth b) + 1

| a ~> b => Int.max (depth a, depth b) + 1

Note that the above is only a more compact notation for the following equivalent
SML program:

fun depth TRUE = 0

| depth FALSE = 0

| depth (`_) = 0

| depth (a /\ b) = Int.max (depth a, depth b) + 1

(* · · · *)

Exercise 1.1 (Pre�y printing). Write a function to convert propositions into strings,
adding parentheses in exactly the necessary and su�cient places according to the
precedence of the grammar of propositions. Your solution need not account for
associativity.

2 Forward Inference Kernel
Usually the trusted kernel of a LCF-based proof assistant consists in an implementation
of forward inference, which is inference from premises to conclusion. We begin with
the signature for a LCF kernel of the intuitionistic sequent calculus; in SML, signatures
serve as type speci�cations for entire structures (modules).
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signature KERNEL =

sig

type proof

(* What sequent is this a proof of? *)

val infer : proof -> sequent

We represent hypotheses as indices into the context.

type hyp = int

Next, we give signatures for the rules of intuitionistic sequent calculus, as functions on
the type proof; these functions may take additional parameters which are necessary
in order to ensure that an actual sequent calculus derivation is uniquely determined
by a value of type proof.

val init : context * hyp -> proof (* init *)

val trueR : context -> proof (* >R *)

val falseL : hyp * sequent -> proof (* ⊥L *)

val conjR : proof * proof -> proof (* ∧R *)

val conjL1 : hyp * proof -> proof (* ∧L1 *)

val conjR2 : hyp * proof -> proof (* ∧L2 *)

val disjR1 : proof * prop -> proof (* ∨R1 *)

val disjR2 : prop * proof -> proof (* ∨R2 *)

val disjL : hyp * proof * proof -> proof (* ∨L *)

val implR : proof -> proof (* ⊃R *)

val implL : hyp * proof * proof (* ⊃L *)

end

Next, we need to implement this signature as structure. To do this, we declare
a structure called Kernel which opaquely ascribes the signature KERNEL; opaque
ascription, wri�en using :> below, ensures that the implementation of the type proof
remains abstract, i.e. no client of the Kernel structure can see its actual concrete
representation. �is is what ensures that only the kernel needs to be veri�ed and
trusted!

structure Kernel :> KERNEL =

struct

At this point, we have to decide on an internal representation of proofs. We could
choose a transient representation, in which the proof trace is forgo�en:

type proof = sequent

fun infer s = s

�en, the implementations of the rules would simply check that their parameters and
premises have the right form, and raise an exception if they do not. For instance:
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(* Γ, A,∆ =⇒ A
init

*)

fun init (ctx, i) =

ctx ===> List.nth (ctx, i)

(* Γ =⇒ > >R *)

fun trueR ctx =

ctx ===> TRUE

(* Γ,⊥,∆ =⇒ a
⊥L

*)

fun falseL (i, ctx ===> a) =

if List.nth (ctx, i) = FALSE then

ctx ===> a

else

raise Fail "falseL not applicable"

(*
Γ =⇒ A Γ =⇒ B

Γ =⇒ A ∧B
∧R

*)

fun conjR (ctx1 ===> a1, ctx2 ===> a2) =

if ctx1 = ctx2 then

ctx1 ===> a1 /\ a2

else

raise Fail "conjR not applicable"

(*

Γ, A ∧B,∆, A =⇒ C

Γ, A ∧B,∆ =⇒ C
∧L1 *)

fun conjL1 (i, ctx ===> c) =

case ctx of

a :: ctx' =>

(case List.nth (ctx', i) of

a' /\ b =>

if a = a' then

ctx' ===> c

else

raise Fail "conjL1 not applicable"

| _ => raise Fail "conjL1 not applicable")

| _ => raise Fail "conjL1 not applicable"

(* and so on *)

Now, a cleaner and more robust way to write the above rule is the following:

(*

Γ, A ∧B,∆, A =⇒ C

Γ, A ∧B,∆ =⇒ C
∧L1 *)

fun conjL1 (i, ctx ===> c) =

let

val a :: ctx' = ctx

val a' /\ b = List.nth (ctx', i)
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val true = a = a'

in

ctx' ===> c

end

handle _ => raise Fail "conjL1 not applicable"

�is pa�ern is also applicable to the other rules of inference. We leave the implemen-
tation of the remaining rules as an exercise.

end

2.1 Evidence-Producing Kernels
�e kernel described in the previous section is su�cient for developing and check-
ing sequent calculus proofs. For instance, consider the following sequent calculus
derivation:

A ∧B,A =⇒ A
init

A ∧B =⇒ A
∧L1

�is is encoded in our kernel as follows:

structure K = Kernel

val d : K.proof = K.conjL1 (0, K.init ([`"A", `"A" /\ `"B"], 0))

However, the proof object d above does not actually contain any information about
how the proof was derived; it may be more accurate to call it a “proof certi�cate” than
to call it a “proof”. If we wish to be able to inspect the proof derivation a�er it has
been constructed, we may provide a di�erent implementation of the KERNEL signature
where the type proof is implemented by some kind of proof tree.

However, if we do this, then we lose abstraction: someone else could easily produce
such a proof tree outside of our kernel. How can we cleanly achieve both abstraction
and inspectability of proofs? One approach is to use a view together with an abstract
type.

Let us begin by de�ning a type parametric in some type variable 'a, which captures
the shape of sequent calculus proof trees, but allows the subtrees to be implemented
by 'a.

type hyp = int

datatype 'a deriv =

INIT of hyp

| TRUE_R

| FALSE_L of hyp

| CONJ_R of 'a * 'a

| CONJ_L1 of hyp * 'a

| CONJ_L2 of hyp * 'a

| DISJ_R1 of 'a

| DISJ_R2 of 'a
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| DISJ_L of hyp * 'a * 'a

| IMPL_R of 'a

| IMPL_L of hyp * 'a * 'a

�e idea is that the position of subtrees in each derivation rule are replaced with
'a. Now, we can interleave the abstract proof type with the type of derivations by
supplying it for 'a in the following way:

structure EvidenceKernel :>

sig

include KERNEL

val unroll : proof -> proof deriv

end =

struct

datatype proof = BY of sequent * proof deriv

infix BY

fun infer (s BY _) = s

fun unroll (_ BY m) = m

fun init (ctx, i) =

ctx ===> List.nth (ctx, i) BY INIT i

handle _ => raise Fail "init not applicable"

fun trueR ctx =

ctx ===> TRUE BY TRUE_R

fun falseL (i, ctx ===> p) =

let

val FALSE = List.nth (ctx, i)

in

ctx ===> p BY (FALSE_L i)

end

handle _ => raise Fail "falseL not applicable"

fun conjR (d1 as ctx1 ===> p1 BY _, d2 as ctx2 ===> p2 BY _) =

let

val true = ctx1 = ctx2

in

ctx1 ===> (p1 /\ p2) BY CONJ_R (d1, d2)

end

handle _ => raise Fail "conjR not applicable"

fun conjL1 (i, d as ctx ===> r BY _) =

let

val p :: ctx' = ctx
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val p' /\ q = List.nth (ctx', i)

val true = p = p'

in

ctx' ===> r BY CONJ_L1 (i, d)

end

handle _ => raise Fail "conjL1 not applicable"

(* and so on *)

end

Exercise 2.1. Now construct a SML function to pre�y print the derivation that corre-
sponds to a value of type EvidenceKernel.proof, using EvidenceKernel.unroll
and structural recursion.

fun pretty (d : proof) : string =

raise Fail "TODO"

3 Re�nement Proof and Backward Inference
It is o�en frustrating to construct proofs manually using the primitives that are exposed
by a forward inference kernel K:KERNEL. Informally, sequent calculus is optimized for
upward (backward) inference from conclusion to premises; the kernel seems to force
us to perform proofs inside-out. When using the kernel, it is also necessary to pass
annoying parameters, such as the context parameter in K.trueR.

Separately for any such kernel, we can develop what is called a re�ner, which is a
module that allows us to construct proofs from the bo�om up, without needing to pass
in any unnecessary parameters. Regarded as a component of a proof system, because
the re�ner ultimately is a mode of use of the kernel, it does not need to be trusted.

In the context of re�nement proof, we will use the word “goal” to mean a sequent.
A re�nement rule is a partial function that assigns to some goal a list of subgoals,
together with a validation. �e input goal correspond to the conclusion of a sequent
calculus rule, and the subgoals correspond to the premises. A validation is a function
that takes a list of proof objects (proofs of the premises) and constructs a new proof

object (a proof of the conclusion). Validations are always constructed using the forward
inference rules exposed by the kernel.

In SML, these concepts are rendered as follows:

type goal = sequent

type subgoals = goal list

type validation = K.proof list -> K.proof

type rule = goal -> subgoals * validation

A completed re�nement proof produces the empty list of subgoals; therefore, its
validation can be instantiated with the empty list of proofs, yielding a proof of the
main conclusion.

We will implement the re�ner as a structure �bered over a kernel K:
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signature REFINER =

sig

structure K : KERNEL

type goal = sequent

type subgoals = goal list

type validation = K.proof list -> K.proof

type rule = goal -> subgoals * validation

val init : hyp -> rule

val trueR : rule

val falseL : hyp -> rule

val conjR : rule

val conjL1 : hyp -> rule

val conjL2 : hyp -> rule

val disJR1 : rule

val disjR2 : rule

val disjL : rule

val implR : rule

val implL : rule

end

Such a signature is implemented via a functor from any kernel K:

functor Refiner (K : KERNEL) : REFINER =

struct

structure K = K

type goal = sequent

type subgoals = goal list

type validation = K.proof list -> K.proof

type rule = goal -> subgoals * validation

Now observe how we implement the backward inference version of init. �e input to
our function is the conclusion of the rule, and we check that the side conditions are
satis�ed; then we return the empty list of subgoals (there were no premises), and for
the validation, we call K.init from the kernel.

fun init i (ctx ===> a) =

let

val true = List.nth (ctx, i) = a

in

([], fn [] => K.init (ctx, i))

end

handle _ => raise Fail "init not applicable"

�e next two rules follow a similar pa�ern and are not very interesting.

fun trueR (ctx ===> a) =

let
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val TRUE = a

in

([], fn [] => K.trueR ctx)

end

handle _ => raise Fail "trueR not applicable"

fun falseL i (ctx ===> a) =

let

val FALSE = List.nth (ctx, i)

in

([], fn [] => K.falseL (i, ctx ===> a))

end

handle _ => raise Fail "falseL not applicable"

�e rules for conjunction are a bit more illustrative:

fun conjR (ctx ===> r) =

let

val p /\ q = r

in

([ctx ===> p, ctx ===> q],

fn [d1, d2] => K.conjR (d1, d2))

end

handle _ => raise Fail "conjR not applicable"

fun conjL1 i (ctx ===> r) =

let

val p /\ _ = List.nth (ctx, i)

in

([p :: ctx ===> r],

fn [d] => K.conjL1 (i, d))

end

handle _ => raise Fail "conjL1 not applicable"

We leave the remainder of the re�nement rules as an exercise.

end

structure R = Refiner (EvidenceKernel)

4 Tactics: combinators for re�nement rules
It is hard to see how to use re�nement rules to construct proofs on their own. However,
there are a number of well-known combinators for re�nement rules which correspond
to derived rules in sequent calculus; in the LCF tradition, derived rules are called tactics,
and the combinators from which they are built are called tacticals (by analogy with
functionals).
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signature TACTIC =

sig

structure R : REFINER

type tactic = R.rule

val thenl : tactic * tactic list -> tactic

val then_ : tactic * tactic -> tactic

val orelse_ : tactic * tactic -> tactic

end

�e most fundamental tactical is thenl; the tactic thenl (t, ts) uses the tactic
t to decompose the current goal into n subgoals; then, the list of tactics ts (also of
length n) is applied pointwise to further decompose these subgoals. �en, the resulting
lists of subgoals are all combined into a single list, which is returned together with
a validation that performs essentially the inverse process for forward inference. �e
tactical then_ is similar, except it uses its second argument to decompose all of the
remaining subgoals.

Finally, the tactic orelse_ (t1, t2) tries to decompose the current goal with
t1; if this fails, it continues with t2.

4.1 Implementing tacticals
�e implementation of the standard tacticals above is provided below as a reference;
it relies on some tricky list manipulation, but the good news is you only need to
implement it once.

functor Tactic (R : REFINER) : TACTIC =

struct

structure R = R

open R

type tactic = goal -> subgoals * validation

fun splitAt (xs, i) =

let

val front = List.take (xs, i)

val back = List.drop (xs, i)

in

(front, back)

end

fun gobbleWith ([], []) args = []

| gobbleWith (n :: ns, f :: fs) args =

let

val (xs, args') = splitAt (args, n)

in
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f xs :: gobbleWith (ns, fs) args'

end

fun stitchProof (validation, subgoalss, validations) =

(List.concat subgoalss,

validation o

gobbleWith (map length subgoalss, validations))

fun then_ (t1, t2) goal =

let

val (subgoals, validation) = t1 goal

val (subgoalss, validations) =

ListPair.unzip (List.map t2 subgoals)

in

stitchProof (validation, subgoalss, validations)

end

fun thenl (t, ts) goal =

let

val (subgoals, validation) = t goal

val (subgoalss, validations) =

ListPair.unzip

(ListPair.mapEq

(fn (t, g) => t g)

(ts, subgoals))

in

stitchProof (validation, subgoalss, validations)

end

fun orelse_ (t1, t2) (goal : goal) =

t1 goal handle _ => t2 goal

end

structure T = Tactic (R)

open T infix then_ thenl orelse_

Now, we can use tactics to capture the backward-inference version of the following
proof:

A ∧B,A,B =⇒ B
init

A ∧B,A,B =⇒ A
init

A ∧B,A,B =⇒ B ∧A
∧R

A ∧B,A =⇒ B ∧A
∧L2

A ∧B =⇒ B ∧A
∧L1

val t : tactic =

R.conjL1 0 then_
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R.conjL2 1 then_

R.conjR thenl

[R.init 0,

R.init 1]

val result = t ([`"A" /\ `"B"] ===> `"B" /\ `"A")

val d : proof = #2 result []

4.2 Possible extensions
LCF-style tactics do not satisfy every need; many di�erent extensions are possible.

Existential variables and uni�cation It is di�cult to capture a usable re�nement
proof theory for logics with extistential quanti�ers using pure LCF; rather than hav-
ing a single introduction rule for the existential quanti�er, it is necessary to have a
countable family of such introduction rules, parameterized in the actual witness of the
existential. �is is highly disruptive to the re�nement proof process, since it may be
that one only determines how to instantiate the existential ∃x.A(x) by a�empting to
prove the predicate A.

To resolve this contradiction, most modern proof assistants add a notion of existen-
tial variable, which allows one to decompose the goal ∃x.A(x) into A(?x); then, later
on in this subproof, the variable ?x can be instantiated by uni�cation with something
concrete (like ?x := 42).

Existential variables introduce many complexities into the design of LCF-style
proof assistants, partly because of the di�culty (and in some cases, impossibility)
of �nding most-general uni�ers. In Coq [10], a higher-order uni�cation algorithm
is used which produces uni�ers which are not most general [11], but because Coq
adheres to the LCF achitecture, this only a�ects the ergonomics of the tactic system as
opposed to the core logic. Additionally, existential variables disrupt the local character
of LCF-style proof re�nement: every re�nement step can a�ect the whole proof state.

On the other hand, higher-order uni�cation is built into the trusted kernel of
Isabelle, which uses both dynamic pa�ern uni�cation (which produces most general
uni�ers at the cost of being somewhat restrictive) and general higher-order uni�cation,
which may produce in�nitely many uni�ers (or none).

One bene�t of building uni�cation into the core is that it is possible to simplify
the notion of proof re�nement signi�cantly, capturing both forward and backward
inference in a single kernel [5]; in turn, this obviates the notion of validation, which is
the hardest part of LCF-style tactic systems to implement correctly.

Backtracking �e orelse_ tactical enables a form of proof search procedure, but
it cannot be used to implement backtracking. �ere are at least two ways to extend
LCF with support for backtracking; one way would be using continuations, but the
most common way is to replace the type of tactics with something that returns a (lazy)
sequence of proof states as follows:

type tactic = R.goal -> (R.subgoals * R.validation) Seq.seq

12



�en, a backtracking tactical par : tactic * tactic -> tactic will simply
merge the results of applying both tactics into a single sequence:

fun par (t1, t2) goal =

Sequence.merge (t1 goal, t2 goal)

Support for backtracking is useful in any proof assistant, but becomes absolutely
essential in the presence of existential variables. Backtracking using sequences of
results was �rst introduced in Isabelle.

Dependent re�nement In the context of implementing dependent type theory, it
is useful to consider a notion of re�nement rule in which the statement of one premise
may refer to the proof of a previous premise. �is is best considered a separate issue
from the ma�er of existential variables, but concrete implementations of this behavior
may either use existential variables (as in [7, 1]) or not (as in [8, 9]).
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