
Lecture Notes on
Ordered Proofs as Concurrent Programs

15-317: Constructive Logic
Frank Pfenning

Lecture 24
November 30, 2017

1 Introduction

In this lecture we begin with a summary of the correspondence between
proofs and programs for subsingleton logic, carry out some new examples,
and then consider how the interpretation might be generalized to the case
of ordered logic with more than one antecedent.

2 Concurrent Subsingleton Programs

Types A ::= ⊕{li : Ai}i∈I internal choice
| N{li : Ai}i∈I external choice
| 1 termination

Processes P,Q ::= ↔ forward id
| (P | Q) compose cut

| R.lk ; P send label right ⊕Rk

| caseL(li ⇒ Qi)i∈I receive label left ⊕L

| caseR(li ⇒ Pi)i∈I receive label right NR
| L.lk ; Q send label left NLk

| closeR close and notify right 1R
| waitL ; Q wait on close left 1L

We also allow mutually recursive type definitions α = A which must be
contractive, that is, A must be of the form ⊕{. . .}, N{. . .}, or 1. We treat a

LECTURE NOTES NOVEMBER 30, 2017

L24.2 Ordered Proofs as Concurrent Programs

type name as equal to its definition and will therefore silently replace it.
The usual manner of making this more explicit is to use types of the form
µα.A, but we forego this exercise here.

Similarly, we allow mutually recursive process definitions of variables
X as processes P in the form ω ` X = P : A. Collectively, these constitute
the program P . We fix a global program P so that the typing judgment,
formally, is ω `P P : A where we assume that ω `P Q : A for every
definition ω ` X = Q : A in P . Since P does not change in any typing
derivation, we omit this subscript in the rules.

A ` ↔ : A
idA

ω ` P : A A ` Q : C

ω ` (P | Q) : C
cutA

ω ` P : Ak (k ∈ I)

ω ` (R.lk ; P) : ⊕{li : Ai}i∈I
⊕Rk

Ai ` Qi : C (for all i ∈ I)

⊕{li : Ai}i∈I ` caseL(li ⇒ Qi)i∈I : C
⊕L

ω ` Pi : Ai (for all i ∈ I)

ω ` caseR(li ⇒ Pi)i∈I : N{li : Ai}i∈I
NR

Ak ` Q : C (k ∈ I)

N{li : Ai}i∈I ` (L.lk ; Q) : C
NLk

· ` closeR : 1
1R

· ` Q : C

1 ` waitL ; Q : C
1L

(ω ` X = P : A) ∈ P

ω ` X : A
X

For the synchronous operational semantics presented via ordered infer-
ence, we use ephemeral propositions proc(P) which expresses the current
state of an executing process P . We also import the process definitions

LECTURE NOTES NOVEMBER 30, 2017

Ordered Proofs as Concurrent Programs L24.3

X = P as persistent propositions def(X,P).

↔
·

fwd
(P | Q)

P | Q
cmp

(R.lk ; P) | (caseL(li ⇒ Qi)i∈I)

P | Qk

⊕C

(caseR(li ⇒ Pi)i∈I) | (L.lk ; Q)

Pk | Q
NC

closeR | (waitL ; Q)

Q
1C

X def(X,P)

P
def

3 Computing with Binary Numbers

We return to the example of numbers in binary notation. A number such
as (11)10 = (1011)2 is represented as the ordered context

e · b1 · b0 · b1 · b1

Increment can be specified using ordered inference by adding an inc propo-
sition on the right and the following rules of inference

b0 inc

b1

b1 inc

inc b0

e inc

e b1

For example, we may make the following inferences

e · b1 · b0 · b1 · b1 · inc
e · b1 · b0 · b1 · inc · b0
e · b1 · b0 · inc · b0 · b0
e · b1 · b1 · b0 · b0

In this lecture we are interested in formulating this kind of computation via
message-passing concurrency. This means we have to identify which of the
propositions e, b0, b1 and inc are to be viewed as messages and which are

LECTURE NOTES NOVEMBER 30, 2017

L24.4 Ordered Proofs as Concurrent Programs

to be viewed as processes. This choice is not uniquely determined, but can
lead to very different styles of programs.

For want of a better name, we will call our two styles functional and
object-oriented. In the functional style, e, b0, and b1 are messages and inc is
a process. In the object-oriented style e, b0, and b1 are processes and inc is
a message.

4 Quasi-Functional Increment

In the quasi-functional version, inc is implemented as a process increment
that receives a stream of bits from the left representing the number n and
produces a stream of bits on the right representing n+ 1.

First, streams of bits (type bin) are represented very similarly to words
from the previous lecture.

bin = ⊕{b0 : bin, b1 : bin, e : 1}
bin ` incr : bin

The type of incr expresses that it transforms one number into another. The
type dictates that incr will have to start by reading from the left.

incr = caseL (b0⇒ . . .
| b1⇒ . . .
| e⇒ . . .)

In the case we receive b0 we have to output b1 and we are done. What we
mean here by “being done” is that from then on, the remaining input bits
are passed on unchanged. We can implement this with an identity process,
or with forwarding, where the latter is more efficient and also more concise.

incr = caseL (b0⇒ R.b1 ;↔
| b1⇒ . . .
| e⇒ . . .)

In the case we receive b1 we have to send b0, but because of the required
carry we still have to incr the remainder of the input stream of bits. This
turns into a recursive call to incr.

incr = caseL (b0⇒ R.b1 ;↔
| b1⇒ R.b0 ; incr
| e⇒ . . .)

LECTURE NOTES NOVEMBER 30, 2017

Ordered Proofs as Concurrent Programs L24.5

When the input stream is empty (which represents the integer 0), we have
to output the integer 1, which is b1 followed by e. After that, both input
and output stream have type 1, so we can terminate by forwarding.

incr = caseL (b0⇒ R.b1 ;↔
| b1⇒ R.b0 ; incr
| e⇒ R.b1 ; R.e ;↔)

5 Quasi-Object-Oriented Increment

The other possibility of interpreting our logical specification as message-
passing concurrent computation is to turn e, b0 and b1 into processes, and
inc into a message. A number such as

e · b1 · b0 · b1 · b1

then constitutes a configuration of five processes

emp | bit1 | bit0 | bit1 | bit1

We can think of each of these processes as an “object”, where we can send
a message to the rightmost object only. Because we can only increment it,
we think of each of these objects as a counter. At the moment, the only
message we can send is an increment message inc, so we have

counter = N{inc : counter}
· ` emp : counter
counter ` bit0 : counter
counter ` bit1 : counter

Let’s start with the bit0 process: it simply absorbes the inc message and
turns into bit1:

bit0 = caseR (inc⇒ bit1)

The bit1 process has to turn into a bit0 process, but is also has to send an
increment message to its left, representing the carry.

bit1 = caseR (inc⇒ L.inc ; bit0)

Finally, emp does not have to send on any message, but spawn a new pro-
cess and continue as bit1:

emp = caseR (inc⇒ empty | bit1)

LECTURE NOTES NOVEMBER 30, 2017

L24.6 Ordered Proofs as Concurrent Programs

6 Converting Between Styles

Here is a summary of the types and code so far.

Increment in quasi-functional style.

bin = ⊕{b0 : bin, b1 : bin, e : 1}
bin ` incr : bin

incr = caseL (b0⇒ R.b1 ;↔
| b1⇒ R.b0 ; incr
| e⇒ R.b1 ; R.e ;↔)

There is concurrency here in that multiple increment processes can be ac-
tive at the same time, processing the incoming bits in a pipeline.

A counter in quasi-object-oriented style.

counter = N{inc : counter}
· ` emp : counter
counter ` bit0 : counter
counter ` bit1 : counter

bit0 = caseR (inc⇒ bit1)
bit1 = caseR (inc⇒ L.inc ; bit0)
emp = caseR (inc⇒ empty | bit1)

Here, concurrency is embodied in multiple increment messages being in
flight at the same time as they flow through the network of processes from
right to left.

Conversions between representations. To implement conversions between
these representation means to implement to processes that mediate be-
tween the types.

counter ` value : bin
bin ` toctr : counter

Extracting the value of a counter. First, value which extracts the value
from the counter to its left. In order to implement this, we need to add a
new kind of message to the counter interface, let’s call is val.

LECTURE NOTES NOVEMBER 30, 2017

Ordered Proofs as Concurrent Programs L24.7

counter = N{inc : counter,
val : bin}

We then extend the implementations of bit0, bit1 and emp to account for this
new kind of message.

bit0 = caseR (inc⇒ bit1
| val⇒ R.b0 ; L.val ;↔)

bit1 = caseR (inc⇒ L.inc ; bit0
| val⇒ R.b1 ; L.val ;↔)

emp = caseR (inc⇒ empty | bit1
| val⇒ R.e ;↔)

Viewing a binary number as a counter. In our first implementation, a
counter exists as a whole sequence of log2(n + 1) processes to hold the
number n, each process holding one bit. In this implementation the counter
actually receives a stream of bits to its left and behaves as a counter to its
client.

Let’s first look at the case when the counter receives an increment mes-
sage inc. In that case we have to spawn a new increment process incr to
increment the stream of bits coming from the left. These two fit together
because

bin ` incr : bin bin ` toctr : counter
bin ` (incr | toctr) : counter

bin ` toctr : counter

toctr = caseR (inc⇒ incr | toctr
| val⇒ . . .)

If the counter receives a val message it simply forwards, since it already
holds the counter value as a stream to its left.

bin ` toctr : counter

toctr = caseR (inc⇒ incr | toctr
| val⇒↔)

7 From Subsingleton to Ordered Logic

The style of implementation we have discussed so far works well when the
problem allows all the processes to be assembled in a straight line, com-

LECTURE NOTES NOVEMBER 30, 2017

L24.8 Ordered Proofs as Concurrent Programs

municating only with its immediate neighbors. But what if we want to
implement a tree? Or operate on two streams such as adding two binary
numbers?

In order to support more complex topologies of process, we generalize
from subsingleton logic to ordered logic. The difference is only that we al-
low multiple antecedents. This is a big change since we immediately obtain
four new connectives: over (A / B), under (A \ B), fuse (A • B), and twist
(A ◦B).

Before we get to their operational meaning, let’s reconsider the basic
judgment. The first attempt is to generalize from

A ` P : B

to
A1 · · ·An ` P : B

The problem now is: How can P address Ai if it wants to send or receive
a message from it? For example, several of these types might be internal
choice, and P could receive a label from any of them. In subsingleton logic,
there was only (at most) a single process to the left, so this was unambigu-
ous.

We could address this by saying, for example, that P received from the
ith process, essentially numbering the antecedents. This quickly becomes
unwieldy, both in practice and in theory. Or we might say that P can only
communicate with, say,An orA1, the extremal processes in the antecedents.
However, this appears too restrictive. Instead, we uniquely label each an-
tecedent as well as the succedent1 with a channel name.

(x1:A1) · · · (xn:An) ` P :: (y:B)

We read this as

Process P provides a service of type B along channel y and uses chan-
nels xi of type Ai.

Since we are still in ordered logic, the order of the antecedents matter, and
we will see later in which way. We abbreviate it as Ω ` P :: (y:B), over-
loading Ω to stand either for just an ordered sequence of antecedent or one
where each antecedent is labeled.

We now generalize each of the rules from before.

1Not strictly necessary, since the conclusion remains a singleton, but convenient to cor-
relate providers with their clients through a private shared channel.

LECTURE NOTES NOVEMBER 30, 2017

Ordered Proofs as Concurrent Programs L24.9

Cut. Instead of simply writing P | Q, the two processes P and Q share a
private channel.

Ω ` Px :: (x:A) ΩL (x:A) ΩR ` Qx :: (z:C)

ΩL Ω ΩR ` (x← Px ; Qx) :: (z:C)
cut

As a point of notation, we subscript processes variables such as P or Q
with bound variables if they are allowed to occur in them. In the process
expression x ← Px ; Qx, the variable x is bound and occurs on both side,
because it is a channel connecting the two processes. We almost maintain
the invariant that all channel names in the antecedent and succedent are
distinct, possibly renaming bound variable silently to maintain that.

Operationally, the process executing (x ← Px ; Qx) continues as Qx

while spawning a new process Px. This interpretation is meaningful since
both (x ← Px ; Qx) and Qx offer service C along z. This asymmetry in
the operational interpretation comes from the asymmetry of ordered logic
(and intuitionistic logic in general) with multiple antecedents but at most
one succedent.

In order to define the operational semantics, we write write proc(x, P)
if the process P provides along channel x, which is to say it is typed as
Ω ` P :: (x:A) for some Ω and A. This is useful to track communications.
Then for cut we have the generalized rule of composition

proc(z, x← Px ; Qx)

proc(w,Pw) proc(z,Qw)
cmpw

We write cmpw to remind ourselves that the channel w must be globally
“fresh”: it is not allowed to occur anywhere else in the process configura-
tion.

Identity. The identity rule could just be

y:A ` ↔ :: (x:A)
id

based on the idea that x and y are known at this point in a proof so they
don’t need to be mentioned. Experience dictates that easily irecognizing
whenever channels are used makes programs much more readable, so we
write

y:A ` x← y :: (x:A)
id

LECTURE NOTES NOVEMBER 30, 2017

L24.10 Ordered Proofs as Concurrent Programs

and read is as x is implemented by y or x forwards to y.
There are various levels of detail in the operational semantics for de-

scribing identity in the presence of channel names. We cannot simply ter-
minate the process, but we need to actively connect x with y. One way to
do this is to globally identify them, which we can do in ordered inference
by using equality (which we have not introduced yet).

proc(x, x← y)

x = y fwd

Internal Choice. This should be straightforward: instead of sending a la-
bel “to the right”, we send it along the channel the process provides.

Ω ` P :: (x:Ak) (k ∈ I)

Ω ` (x.lk ; P) :: (x : ⊕{li:Ai}i∈I)
⊕Rk

Conversely, for the left rule we just receive along a channel of the right type,
rather than receiving from the right.

ΩL (x:Ai) ΩR ` Qi :: (z:C) (∀i ∈ I)

ΩL (x:⊕{li:Ai}i∈I) ΩR ` case x (li ⇒ Qi)i∈I :: (z:C)
⊕L

Communication of the label goes through a channel. We only show the
synchronous version:

proc(x, x.lk ; P) proc(z, case x (li ⇒ Qi)i∈I)

proc(x, P) proc(z,Qk)
⊕C

The fly in the ointment here is that these two processes may actually not
be next to each other, because a client can not be next to all of its providers
now that there is more than one.

One possible solution is to send messages (asynchronously) and allow
them to be move past other messages and processes. This, however, does
not seem a faithful representation of channel behavior, and a single com-
munication could take many steps of exchange. A simpler solution is to
retreat to linear inference where the order of the propositions no longer mat-
ters. We have used this, for example, to describe the spanning tree con-
struction, Hamiltonian cycles, blocks world, etc. Now we reuse it for the
operational semantics. Our earlier rules for cut and identity should also be
reinterpreted in linear and not ordered inference.

LECTURE NOTES NOVEMBER 30, 2017

Ordered Proofs as Concurrent Programs L24.11

External Choice. This is symmetric to internal choice and therefore bor-
ing and postponed.

Unit. The previous pattern generalizes nicely: instead of closeR and waitL
we close and wait on a channel.

· ` close x :: (x:1)
1R

ΩL ΩR ` Q :: (z:C)

ΩL (x:1) ΩR ` (wait x ; Q) :: (z:C)
1L

proc(x, close x) proc(z,wait x ; Q)

proc(z,Q)
1C

Fuse. The natural right rule for fuse has two premises.

Ω1 ` A Ω2 ` B
Ω1 Ω2 ` A •B

•R

In order to avoid spawning a new process in this rule, we are looking for an
sufficient one-premise version. We accomplish this by requiring that either
of the two premises must be the identity. So either Ω1 = A or Ω2 = B.
These considerations yield:

Ω ` B
A Ω ` A •B

•R∗
Ω ` A

Ω B ` A •B •R
†

Rather arbitrarily we pick the first, which yields the following pair of right
and left rules for A •B

Ω ` B
A Ω ` A •B

•R∗
ΩL A B ΩR ` C

ΩL (A •B) ΩR ` C
•L

Again, we can ask which of the rules carries information, and here it is •R∗
which sends. Filling in channel names, we see that once again a channel is
sent and received.

Ω ` P :: (x:B)

(w:A) Ω ` (send x w ; P) :: (x:A •B)
•R∗

ΩL (y:A) (x:B) ΩR ` Qy :: (z:C)

ΩL (x:A •B) ΩR ` (y ← recv x ; Qy) :: (z:C)
•L

The computation rule implements the intended operational behavior di-
rectly.

proc(x, send x w ; P) proc(z, y ← recv x ; Qy)

proc(P) proc([w/y]Qy)
•C

LECTURE NOTES NOVEMBER 30, 2017

L24.12 Ordered Proofs as Concurrent Programs

8 Lists

With the constructs we have so far, we can now define the type listA of lists
with elements of some arbitrary type A. An “element” here is actually a
channel. For example, a list of binary numbers from earlier in the lecture
would be listbin, a list of counters would be listcounter.

listA = ⊕{cons : A • listA, nil : 1}

If we are using a channel l : listA, the above type expresses that we either
receive a cons label followed by a channel of type A and then another list,
or we receive a nil label followed by an end message closing the channel.

As an example, we develop a process that takes two lists, l and k, and
produces the result r of appending them. On each line we show the state
of the type of the channels in the form Ω ` (r : C) as we fill in the process.
We begin by receiving a label from l, just like the functional code would be
a case of the structure of l.

listA = ⊕{cons : A • listA, nil : 1}

(l : listA) (k : listA) ` append : (r : listA)

append = case l (nil⇒ . . .
| cons⇒ . . .)

When the input list is empty, the result list r is simply k, which we ac-
complish just by forwarding. We just have to make sure to wait for the
termination of l.

listA = ⊕{cons : A • listA, nil : 1}

(l : listA) (k : listA) ` append : (r : listA)

append = case l (nil⇒ % (l : 1) (k : listA) ` (r : listA)
wait l ; % (k : listA) ` (r : listA)
r ← k

| cons⇒ . . . % (l : A • listA) (k : listA) ` (r : listA)

In the case for cons, we have exposed the underlying ordered pair A • listA.
Checking against the left rule for •

ΩL (y:A) (x:B) ΩR ` Qy :: (z:C)

ΩL (x:A •B) ΩR ` (y ← recv x ; Qy) :: (z:C)
•L

we see we can receive the element and it will be added to the antecedents
in order

LECTURE NOTES NOVEMBER 30, 2017

Ordered Proofs as Concurrent Programs L24.13

listA = ⊕{cons : A • listA, nil : 1}

(l : listA) (k : listA) ` append : (r : listA)

append = case l (nil⇒ wait l ; r ← k
| cons⇒ % (l : A • listA) (k : listA) ` (r : listA)

x← recv l % (x : A) (l : A • listA) (k : listA) ` (r : listA)
. . .)

Next, we should send a cons label and then x along r: this is how much
of the output list r we already know at this point. And we have to do
this because we cannot recurse before the context has the right form again.
Checking the form of the •R∗ rule

Ω ` P :: (x:B)

(w:A) Ω ` (send x w ; P) :: (x:A •B)
•R∗

we see that it is possible to send x because it is indeed at the left end of the
context.

listA = ⊕{cons : A • listA, nil : 1}

(l : listA) (k : listA) ` append : (r : listA)

append = case l (nil⇒ wait l ; r ← k
| cons⇒ % (l : A • listA) (k : listA) ` (r : listA)

x← recv l % (x : A) (l : listA) (k : listA) ` (r : listA)
r.cons ; % (x : A) (l : listA) (k : listA) ` (r : A • listA)
send r x ; % (l : listA) (k : listA) ` (r : listA)
. . .)

Now we can recurse, completing the program.

listA = ⊕{cons : A • listA, nil : 1}

(l : listA) (k : listA) ` append : (r : listA)

append = case l (nil⇒ wait l ; r ← k
| cons⇒ % (l : A • listA) (k : listA) ` (r : listA)

x← recv l % (x : A) (l : listA) (k : listA) ` (r : listA)
r.cons ; % (x : A) (l : listA) (k : listA) ` (r : A • listA)
send r x ; % (l : listA) (k : listA) ` (r : listA)
append)

Interestingly, it appears2 all terminating processes P with the type

(l : listA) (k : listA) ` P : (r : listA)

2a conjecture, at present. . .

LECTURE NOTES NOVEMBER 30, 2017

L24.14 Ordered Proofs as Concurrent Programs

will have to append l and k in this order, even if the details on how this is
accomplished may differ. For example, let’s imagine we want to read an
element from k and send this on to r in a hypothetical process exapp:

listA = ⊕{cons : A • listA, nil : 1}

(l : listA) (k : listA) ` exapp : (r : listA)

exapp = case k (nil⇒ . . .
| cons⇒ % (l : listA) (k : A • listA) ` (r : listA)

x← recv k % (l : listA) (x : A) (k : listA) ` (r : listA)
. . .)

At this point we cannot send x along r because x is not at the left end
of the context. So the constraints imposed by ordered logic significantly
constrain the space of possibly implementations. If we worked in linear
logic instead, where the order of hypotheses didn’t matter, sending x here
would be possible. The only guarantee we would get3 is that r contains all
the elements from l and k in some arbitrary order.

3a conjecture, at present. . .

LECTURE NOTES NOVEMBER 30, 2017

	Introduction
	Concurrent Subsingleton Programs
	Computing with Binary Numbers
	Quasi-Functional Increment
	Quasi-Object-Oriented Increment
	Converting Between Styles
	From Subsingleton to Ordered Logic
	Lists

