
Lecture Notes on
Substructural Deduction

15-317: Constructive Logic
Jonathan Sterling*

Lecture 20
November 13, 2017

In philosophy, the subjective logic is the study of valid inference: the
correct deduction of conclusions from premises. We transcribe this activity
using horizontal lines, where premises lie above the line and conclusions lie
below the line:

J0 · · · Jn
K

R

The meaning of such an inference is that we can deduce K from J0
through Jn. This is a schema for the deduction of mathematical knowledge,
which remains true in permanence as soon as it has become true. Therefore,
deductions of this kind may freely ignore, reuse or reorder known facts; this
kind of inference is called structural, and notions of inference which are not
closed under these operations are called substructural.

1 Linear Inference

What we have seen above is not, however, the full picture, which is captured
instead by the notion of inference qua local transformation of states. In
generality, such a view requires us to admit multiple conclusions, leading to
the following schema for inference:

J0 · · · Jm
K0 · · · Kn

R

*These notes are substantially influenced by Frank Pfenning’s notes on Deductive Infer-
ence from 15-816 (2016).

LECTURE NOTES NOVEMBER 13, 2017

Substructural Deduction L20.2

The meaning of the above inference is that the transition R can take
place when our state includes J0 through Jm, and takes us to a new state
which instead has K0 through Kn. In this transition, the facts Ji have been
consumed and replaced.

Under such a paradigm, a rule of inference expresses an atomic transition
from one state to another; the premises capture a fragment of the state prior
to the transition, and the conclusions capture the effect of that transition on
the original state.

Ephemerality and persistence The above explanation captures the more
general situation of knowledge which is not persistent but instead ephemeral
(subject to loss or change). We call inference that involves ephemeral judg-
ments linear.

The ephemeral version of deduction which we described above can be
used to describe everyday situations, where the subjects of inference are not
unchanging realities but are instead contingent and subject to change over
time.

While the status of a statement like ∀a, b, c : R. a2 + b2 = c2 is permanent
or persistent from the moment of its deduction, consider the statement
“China is on the socialist road”. This assertion may be correct at one time and
incorrect at another; it began to be true in 1949, but it ceased to be true in
1976. Truth is ephemeral.

1.1 A Single Spark Can Start A Prairie Fire

Consider the old Chinese saying, “A single spark can start a prairie fire.” We
can capture this idea using linear inference using the following kinds of fact:
spark, on fire(p) and prairie(p).

prairie(p) spark

prairie(p) on fire(p)

We can refine this a bit more by noticing that some p being a prairie
is a persistent kind of fact: once true, it always remains true, and we can
duplicate that fact as-needed. We will use underlines to indicate persistent
facts in our states; we are also justified in omitting a persistent fact in the
conclusion, since it is implicitly present.

prairie(p) spark

on fire(p)

LECTURE NOTES NOVEMBER 13, 2017

Substructural Deduction L20.3

Choosing substructural (linear, ordered) deduction is not a restriction so
much as an ability. Substructural logic generalizes structural logic.

1.2 Commodity Exchange, the Universal Equivalent and the Money-
Form of Value

In political economy, the Value form is initially comprised of two parts: the
relative form of value and the equivalent form of value [MMF04]. These two
moments of value can be observed when two commodities meet in the
marketplace for exchange; for instance:

20 yards of linen

one coat

If a quantity of coats is fixed, then the relative form of value is the 20
yards of linen, and the equivalent form is the single coat; when the exchange
is read in the other direction (and the quantity of linen is fixed), the relative
form is the single coat and the equivalent form is the 20 yards of linen.

Conceivably one can come up with relative and equivalent values for
all commodities, leading to a vast network of relationships between com-
modities; for instance, if one can establish an exchange rate between coats
and pomagranates, then one can compose this with the one between linen
and coats, establishing a certain quantity of pomagranates as the equivalent
form of value to the relative form of value in linen.

However, the development of an advanced capitalist economy is essen-
tially precluded by this design, because of the fact that the values of each
commodity depend on the values of every other commodity that they can
(transitively) be exchanged with. There are two main problems:

1. Whether one can actually exchange commodity A with commodity B
is contingent on whether there is a chain of exchange relations that
connects A and B; this is not guaranteed.

2. The units of exchange between two commodities may establish a non-
whole-number relative value at a certain equivalent value. This can
lead to unfair exchanges.

The answer to these problem is the development of a universal equiva-
lent against which the relative form of value of all commodities is measured,
i.e. a classifying object in the space of commodities. This universal equivalent
is called money. When we have a universal equivalent, the simplest way to
exchange two commodities is to use money as an intermediate form.

LECTURE NOTES NOVEMBER 13, 2017

Substructural Deduction L20.4

pretzel

quarter

bagel

dollar quarter

quarter quarter quarter quarter

dollar

Now, suppose I have seven pretzels, and I want to convert these into
bagels. Let us bring the pretzels to the market:

pretzel pretzel pretzel pretzel pretzel pretzel pretzel

quarter pretzel pretzel pretzel pretzel pretzel pretzel

quarter quarter pretzel pretzel pretzel pretzel pretzel

quarter quarter quarter pretzel pretzel pretzel pretzel

quarter quarter quarter quarter pretzel pretzel pretzel

quarter quarter quarter quarter quarter pretzel pretzel

quarter quarter quarter quarter quarter quarter pretzel

quarter quarter quarter quarter quarter quarter quarter

dollar quarter quarter quarter

bagel quarter quarter

Using the rules of inference, we first converted all of our pretzels into
the universal equivalent; then, we converted this into as many bagels as
possible. At the end, we received 50¢ in change from the bagel vendor,
because our pretzels did not have the relative form of value of a whole-
number equivalent quantity of bagel.

2 Ordered Inference

So far we have uncovered a notion of inference which describes the local
transition of states, which are comprised of unordered collections of facts.
We can refine this further, by allowing these facts to have a location relative
to one another, and not generally allowing two facts to switch places. This
opens up an entirely new realm of processes which can be captured through
inference.

LECTURE NOTES NOVEMBER 13, 2017

Substructural Deduction L20.5

2.1 Example: A Stack Calculator

Ordered inference can be used to encode what is called substructural opera-
tional semantics, in which transitions for state machines are encoded as rules
of inference [PS09]; the ordered character of facts naturally gives rise to a
notion of control stack.

Consider the following following grammar of arithmetic expressions
and stack frames:

E ::= n̄ | plus(E,E) | minus(E,E)
K ::= plus(�, E) | plus(n̄,�) | minus(�, E) | minus(n̄,�)

Now we define three kinds of fact or task:

1. calc(E) means “calculate E”

2. ret(n̄) means “return the numeral n̄”

3. cont(K) means “resume calculation K when a value has been re-
turned”

We now provide rules which, if executed in ordered inference, will derive
ret(n̄) for some n̄ from calc(E) for any E.

calc(n̄)

ret(n̄)

calc(plus(E1, E2))

calc(E1) cont(plus(�, E2))

calc(minus(E1, E2))

calc(E1) cont(minus(�, E2))

ret(n̄) cont(plus(�, E))

calc(E) cont(plus(n̄,�))

ret(n̄) cont(plus(m̄,�))

ret(n+m)

ret(n̄) cont(minus(�, E))

calc(E) cont(minus(n̄,�))

ret(n̄) cont(minus(m̄,�))

ret(n−m)

Observe that the ordered character of inference is crucial here. If we were
allowed to reorder facts, the procedure would be non-deterministic and
would in most cases not return the correct result: consider what would
happen if we swapped two different stack frames!

Exercise 1 In order to encode our control stack, we have expoited the fact that
facts cannot be exchanged in ordered inference. Suppose we were working in linear
inference, where facts can be exchanged; can you still find a way to encode the
stack calculator?

LECTURE NOTES NOVEMBER 13, 2017

Substructural Deduction L20.6

2.2 Lambek Calculus

The first application of ordered deduction was to capture the surface struc-
ture of natural language expressions in a compositional way, accounting
for all the oddities of word order, gapping, and scrambling which pervade
human languages. Initiated by Lambek [Lam58], this tradition has given
birth to an explosion of new calculi and formalisms for ordered logic during
the past half century, both in the style of lambda calculus [PP98, PP, MVF11,
Mor12] and in combinatory style [Ste96, Bal02].

Lambek calculus begins by specifying a collection “atomic syntactic
types” (base types) which represent the primitive parts of speech. Here are
some basic ones:1

TYPE MEANING EXAMPLE

np noun phrase “people”
dp determiner phrase “the people”, “she”
vp verb phrase “she serves the people”

Then, we add two connectivesB/A andA\B (called “over” and “under”
respectively) which are subject to the following rules of ordered inference:

M : B / A N : A

M N : B
/E

N : A M : A \B
N M : B

\E

From the elimination rules above, these seem to be some kind of impli-
cation, which differ only in whether the argument should occur to the left
or to the right. We use these connectives to generate the types of words, and
then the rules of the logic specify the ways that words can be combined.

For instance, transitive verbs have type (dp \ vp) / dp; that is, they are
terms which take (first) a determiner phrase on the right (the object) and
then another determiner phrase on the left (the subject), and then behave as
a verb phrase (rougly a sentence). Adjectives have type np / np: if you place
one before a noun phrase, it becomes a noun phrase. Determiners have
type dp / np: if you place a determiner before a noun phrase, it becomes a
determiner phrase.

Conjunctions like “and” can be assigned the type A \ (A / A) for any
syntactic type A.

1In modern linguistics, there are many more syntactic types! But these will allow us to
work through some basic examples. Note also that in these notes we diverge slightly from
the atomic types chosen by Lambek, preferring a presentation more aligned with the modern
understanding of natural language syntax.

LECTURE NOTES NOVEMBER 13, 2017

Substructural Deduction L20.7

2.2.1 Parsing

With these connectives in place, ordered inference gives an operational
semantics to parsing problems. To set up a parsing problem, the initial
state of facts is given as a sequence of words together with their syntactic
type; then, one tries to use the rules of Lambek calculus to derive a single
proposition, vp. Here is an example:

Women : dp hold up : (dp \ vp) / dp half : dp / dp the : dp / np sky : np

Women : dp hold up : (dp \ vp) / dp half : dp / dp the sky : dp

Women : dp hold up : (dp \ vp) / dp half the sky : dp

Women : dp hold up half the sky : dp \ vp

Women hold up half the sky : vp
\E

/E

/E

/E

Remark 1 The reader may be uncomfortable with the fact that we have started
with hold up : (dp \ vp) / dp as a single lexeme, rather than as a compound phrase

formed using the verb hold and the verb modifier up . Unfortunately, it is not yet
possible for us to account for this kind of gapping construction, which requires the
machinery developed in [MVF11].

Remark 2 Why is women : dp a determiner phrase rather than a noun phrase?
Technically, it is really a plural noun phrase which is adjoined to a silent plural
determiner; we will learn to account for phenomena analogous to this in §2.2.3.

2.2.2 Derived Rules and Type Raising

For the sake of space, fix the following abbreviations:

tv , (dp \ vp) / dp (transitive verb)

iv , dp \ vp (intransitive verb)

d , dp / np (determiner)

conj[A] , A \ (A / A) (conjunction)

Try to parse the sentence, “Lenin opposes and Kerensky supports the War.”,
assuming the following initial state, writing ? for an unconstrained syntac-
tic type:

Lenin : dp opposes : tv and : conj[?] Kerensky : dp supports : tv the : d war : np

LECTURE NOTES NOVEMBER 13, 2017

Substructural Deduction L20.8

You will quickly find that it cannot be done! Certain parts of the sentence
can be parsed, but no matter what we try, we will get stuck. For instance:

Lenin : dp opposes : tv and : conj[?] Kerensky : dp supports : tv the : d war : np

Lenin : dp opposes : tv and : conj[?] Kerensky : dp supports : tv the war : dp

Lenin : dp opposes : tv and : conj[?] Kerensky : dp supports the war : iv

Lenin : dp opposes : tv and : conj[?] Kerensky supports the war : vp
\E

/E

/E

And that is as far as we can possibly get. To get further, we need to
introduce type raising. First, let’s add introduction rules for the over and
under connectives:

· · ·u : A....
M : B

λu.M : B / A
/Iu

u : A · · ·....
M : B

λu.M : A \B
\Iu

In the above rules, we use ellipses to indicate that the hypothesis must
be the rightmost or the leftmost assumption respectively. Now, for any
syntactic types A,X we can derive the following type raising rule:

M : A

M↑ : X / (A \X)
raise ,

M : A v : A \X
v M : X

\E

λv.v M : X / (A \X)
/Iv

Another important derived rule is composition:

M : A / B N : B / C

M ;N : A / C
cmp ,

M : A / B

N : B / C u : C

N v : B
/E

M (N v) : A
/E

λv.M (N v) : A / C
/Iv

LECTURE NOTES NOVEMBER 13, 2017

Substructural Deduction L20.9

Now we are equipped to try our derivation again.

Lenin : dp opposes : tv and : conj[?] Kerensky : dp supports : tv the : d war : np

Lenin : dp opposes : tv and : conj[?] Kerensky : dp supports : tv the war : dp

Lenin↑ : vp / (dp \ vp) opposes : (dp \ vp) / dp and : conj[?] Kerensky : dp supports : tv the war : dp

Lenin↑; opposes : vp / dp and : conj[?] Kerensky : dp supports : tv the war : dp

Lenin↑; opposes : vp / dp and : conj[?] Kerensky↑ : vp / (dp \ vp) supports : tv the war : dp

Lenin↑; opposes : vp / dp and : (vp / dp) \ ((vp / dp) / (vp / dp)) Kerensky↑; supports : vp / dp the war : dp

Lenin↑; opposes and : (vp / dp) / (vp / dp) Kerensky↑; supports : vp / dp the war : dp

Lenin↑; opposes and Kerensky↑; supports : vp / dp the war : dp

Lenin↑; opposes and Kerensky↑; supports the war : vp

/E

\E

cmp

raise

cmp

raise

/E

Exercise 2 Try to derive the each of following rules, or conjecture that it is impos-
sible.

A

X / (X / A)

A

(X / A) \X
A

(A \X) \X

2.2.3 Using Persistent Propositions

Consider adding a new atomic syntactic type npmass for mass nouns. Among
other things, mass nouns differ from ordinary nouns in that their determiner
is silent (they do not need to use “the”): that is, this determiner appears in
the parse tree, but it does not appear in the surface syntax.

This seems to poses a problem for parsing: we will not have the deter-
miner in our state initially, since we don’t know in advance where we will
need it. The solution is to regard this determiner as persistent, and simply
add ∅ : dp / npmass to all our states. Then, whenever we need a mass noun
determiner, we can freely add it in the appropriate spot.

Consider the sentence, “We demand peace and bread and land!”, where all
three demands are mass nouns. To parse this, we want to derive a rule of
the following shape:

∅ : dp / npmass we : dp demand : tv peace : npmass and : conj[npmass] bread : npmass and : conj[npmass] land : npmass

∅ : dp / npmass ??? : vp

Stop and try to derive this before turning the page.

LECTURE NOTES NOVEMBER 13, 2017

Substructural Deduction L20.10

Solution:

∅ : dp / npmass we : dp demand : tv peace : npmass and : conj[npmass] bread : npmass and : conj[npmass] land : npmass

∅ : dp / npmass we : dp demand : tv peace : npmass and : conj[npmass] bread and : npmass / npmass land : npmass

∅ : dp / npmass we : dp demand : tv peace : npmass and : conj[npmass] bread and land : npmass

∅ : dp / npmass we : dp demand : tv peace and : npmass / npmass bread and land : npmass

∅ : dp / npmass we : dp demand : tv peace and bread and land : npmass

∅ : dp / npmass we : dp demand : tv ∅ : dp / npmass peace and bread and land : npmass

∅ : dp / npmass we : dp demand : tv ∅ peace and bread and land : dp

∅ : dp / npmass we : dp demand ∅ peace and bread and land : iv

∅ : dp / npmass we demand ∅ peace and bread and land : vp
\E

/E

/E

/E

\E

/E

\E

LECTURE NOTES NOVEMBER 13, 2017

Substructural Deduction L20.11

References

[Bal02] Jason Baldridge. Lexically Specified Derivational Control in Combi-
natory Categorial Grammar. PhD thesis, University of Edinburgh,
2002.

[Lam58] Joachim Lambek. The mathematics of sentence structure. The
American Mathematical Monthly, 65(3):154–170, 1958.

[MMF04] K. Marx, E. Mandel, and B. Fowkes. Capital: A Critique of Political
Economy. Number Volume 1 in Penguin classics. Penguin Books
Limited, 2004.

[Mor12] G.V. Morrill. Type Logical Grammar: Categorial Logic of Signs.
Springer Netherlands, 2012.

[MVF11] Glyn Morrill, Oriol Valentı́n, and Mario Fadda. The displacement
calculus. Journal of Logic, Language and Information, 20(1):1–48, Jan
2011.

[Pfe04] Frank Pfenning. Substructural operational semantics and linear
destination-passing style. In W.-N. Chin, editor, Proceedings of
the 2nd Asian Symposium on Programming Languages and Systems
(APLAS’04), page 196, Taipei, Taiwan, November 2004. Springer-
Verlag LNCS 3302. Abstract of invited talk.

[PP] Jeff Polakow and Frank Pfenning. Natural deduction for intu-
itionistic non-commutative linear logic. Submitted. Revised and
extended version of abstract from TLCA’99.

[PP98] Jeff Polakow and Frank Pfenning. Ordered linear logic program-
ming. Technical Report CMU-CS-98-183, Department of Com-
puter Science, Carnegie Mellon University, December 1998.

[PS09] Frank Pfenning and Robert J. Simmons. Substructural operational
semantics as ordered logic programming. In Proceedings of the 24th
Annual Symposium on Logic in Computer Science (LICS 2009), pages
101–110, Los Angeles, California, August 2009. IEEE Computer
Society Press.

[Ste96] Mark Steedman. Surface structure and interpretation. Linguistic
inquiry monographs, 30. MIT Press, 1996.

LECTURE NOTES NOVEMBER 13, 2017

	Linear Inference
	A Single Spark Can Start A Prairie Fire
	Commodity Exchange, the Universal Equivalent and the Money-Form of Value

	Ordered Inference
	Example: A Stack Calculator
	Lambek Calculus
	Parsing
	Derived Rules and Type Raising
	Using Persistent Propositions

