
Lecture Notes on
Prolog

15-317: Constructive Logic
Frank Pfenning

Lecture 14
October 15, 2009

In this lecture we introduce some simple data structures such as lists, and
simple algorithms on them such as as quicksort or mergesort. We also in-
troduce some first considerations of types and modes for logic programs.

1 Lists

Lists are defined by two constructors: the empty list nil and the constructor
cons which takes an element and a list, generating another list. For exam-
ple, the list a, b, c would be represented as cons(a, cons(b, cons(c, nil))). The
official Prolog notation for nil is [], and for cons(h, t) is .(h, t), overload-
ing the meaning of the period ‘.’ as a terminator for clauses and a binary
function symbol. In practice, however, this notation for cons is rarely used.
Instead, most Prolog programs use [h|t] for cons(h, t).

There is also a sequence notation for lists, so that a, b, c can be written
as [a, b, c]. It could also be written as [a | [b | [c | []]]] or
[a, b | [c, []]]. Note that all of these notations will be parsed into
the same internal form, using nil and cons. We generally follow Prolog list
notation in these notes.

2 Type Predicates

We now return to the definition of plus from the previous lecture, except
that we have reversed the order of the two clauses.

1

plus(z, N, N).
plus(s(M), N, s(P)) :- plus(M, N, P).

In view of the new list constructors for terms, the first clause now looks
wrong. For example, with this clause we can prove

plus(s(z), [a, b, c], s([a, b, c])).

This is absurd: what does it mean to add 1 and a list? What does the term
s([a, b, c]) denote? It is clearly neither a list nor a number.

From the modern programming language perspective the answer is
clear: the definition above lacks types. Unfortunately, Prolog (and tradi-
tional predicate calculus from which it was originally derived) do not dis-
tinguish terms of different types. The historical answer for why these lan-
guages have just a single type of terms is that types can be defined as unary
predicates. While this is true, it does not account for the pragmatic advan-
tage of distinguishing meaningful propositions from those that are not. To
illustrate this, the standard means to correct the example above would be
to define a predicate nat with the rules

nat(0)
nz

nat(N)

nat(s(N))
ns

and modify the base case of the rules for addition

nat(N)

plus(0, N, N)
pz

plus(M, N,P)

plus(s(M), N, s(P))
ps

One of the problems is that now, for example, plus(0, nil, nil) is false, when it
should actually be meaningless. Many problems in debugging Prolog pro-
grams can be traced to the fact that propositions that should be meaningless
will be interpreted as either true or false instead, incorrectly succeeding or
failing. If we transliterate the above into Prolog, we get:

nat(z).
nat(s(N)) :- nat(N).

plus(z, N, N) :- nat(N).
plus(s(M), N, s(P)) :- plus(M, N, P).

No self-respecting Prolog programmer would write the plus predicate this
way. Instead, he or she would omit the type test in the first clause leading

2

to the earlier program. The main difference between the two is whether
meaningless clauses are false (with the type test) or true (without the type
test). One should then annotate the predicate with the intended domain.

% plus(m, n, p) iff m + n = p for nat numbers m, n, p.
plus(z, N, N).
plus(s(M), N, s(P)) :- plus(M, N, P).

It would be much preferable from the programmer’s standpoint if this
informal comment were a formal type declaration, and an illegal invocation
of plus were a compile-time error rather than leading to silent success or
failure. There has been some significant research on types systems and type
checking for logic programming languages [5] and we will talk about types
more later in this course.

3 List Types

We begin with the type predicates defining lists.

list([]).
list([X|Xs]) :- list(Xs).

Unlike languages such as ML, there is no test whether the elements of a list
all have the same type. We could easily test whether something is a list of
natural numbers.

natlist([]).
natlist([N|Ns]) :- nat(N), natlist(Ns).

The generic test, whether we are presented with a homogeneous list, all of
whose elements satisfy some predicate P, would be written as:

plist(P, []).
plist(P, [X|Xs]) :- P(X), plist(P, Xs).

While this is legal in some Prolog implementations, it can not be justi-
fied from the underlying logical foundation, because P stands for a pred-
icate and is an argument to another predicate, plist. This is the realm
of higher-order logic, and a proper study of it requires a development of
higher-order logic programming [3, 4]. In Prolog the goal P(X) is a meta-call,
often written as call(P(X)). We will avoid its use, unless we develop
higher-order logic programming later in this course.

3

4 List Membership and Disequality

As a second example, we consider membership of an element in a list.

member(X, cons(X, Y s))

member(X, Y s)

member(X, cons(Y, Y s))

In Prolog syntax:

% member(X, Ys) iff X is a member of list Ys
member(X, [X|Ys]).
member(X, [Y|Ys]) :- member(X, Ys).

Note that in the first clause we have omitted the check whether Ys is a
proper list, making it part of the presupposition that the second argument
to member is a list.

Already, this very simple predicate has some subtle points. To show
the examples, we use the Prolog notation ?- A. for a query A. After pre-
senting the first answer substitution, Prolog interpreters issue a prompt to
see if another solution is desired. If the user types ‘;’ the interpreter will
backtrack to see if another solution can be found. For example, the query

?- member(X, [a,b,a,c]).

has four solutions, in the order

X = a;
X = b;
X = a;
X = c.

Perhaps surprisingly, the query

?- member(a, [a,b,a,c]).

succeeds twice (both with the empty substitution), once for the first occur-
rence of a and once for the second occurrence.

If member is part of a larger program, backtracking of a later goal could
lead to unexpected surprises when member succeeds again. There could
also be an efficiency issue. Assume you keep the list in alphabetical order.
Then when we find the first matching element there is no need to traverse
the remainder of the list, although the member predicate above will always
do so.

4

So what do we do if we want to only check membership, or find the first
occurrence of an element in a list? Unfortunately, there is no easy answer,
because the most straighforward solution

member(X, cons(X, Y s))

X 6= Y member(X, Y s)

member(X, cons(Y, Y s))

requires disequality which is problematic in the presence of variables. In
Prolog notation:

member1(X, [X|Ys]).
member1(X, [Y|Ys]) :- X \= Y, member1(X, Ys).

When both arguments are ground, this works as expected, giving just one
solution to the query

?- member1(a, [a,b,a,c]).

However, when we ask

?- member1(X, [a,b,a,c]).

we only get one answer, namely X = a. The reason is that when we come
to the second clause, we instantiate Y to a and Ys to [b,a,c], and the
body of the clause becomes

X \= a, member1(X, [b,a,c]).

Now we have the problem that we cannot determine if X is different from
a, because X is still a variable. Prolog interprets s 6= t as non-unifiability,
that is, s 6= t succeeds if s and t are not unifiable. But X and a are unifiable,
so the subgoal fails and no further solutions are generated.1

There are two attitudes we can take. One is to restrict the use of dis-
equality (and, therefore, here also the use of member1) to the case where
both sides have no variables in them. In that case disequality can be easily
checked without problems. This is the solution adopted by Prolog, and one
which we adopt for now.

The second one is to postpone the disequality s 6= t until we can tell
from the structure of s and t that they will be different (in which case we

1One must remember, however, that in Prolog unification is not sound because it omits
the occurs-check, as hinted at in the previous lecture. This also affects the correctness of
disequality.

5

succeed) or the same (in which case the disequality fails). The latter so-
lution requires a much more complicated operational semantics because
some goals must be postponed until their arguments become instantiated.
This is the general topic of constructive negation2 [1] in the setting of con-
straint logic programming [2, 6].

Disequality is related to the more general question of negation, because
s 6= t is the negation of equality, which is a simple predicate that is either
primitive, or could be defined with the one clause X = X.

5 Simple List Predicates

Now let’s explore some other list operations. We start with prefix(xs, ys)
which is supposed to hold when the list xs is a prefix of the list ys. The
definition is relatively straightforward.

prefix([], Ys).
prefix([X|Xs], [X|Ys]) :- prefix(Xs, Ys).

Conversely, we can test for a suffix.

suffix(Xs, Xs).
suffix(Xs, [Y|Ys]) :- suffix(Xs, Ys).

Interestingly, these predicates can be used in a variety of ways. We can
check if one list is a prefix of another, we can enumerate prefixes, and we
can even enumerate prefixes and lists. For example:

?- prefix(Xs,[a,b,c,d]).
Xs = [];
Xs = [a];
Xs = [a,b];
Xs = [a,b,c];
Xs = [a,b,c,d].

enumerates all prefixes, while

2The use of the word “constructive” here is unrelated to its use in logic.

6

?- prefix(Xs,Ys).
Xs = [];

Xs = [A]
Ys = [A|_];

Xs = [A,B]
Ys = [A,B|_];

Xs = [A,B,C]
Ys = [A,B,C|_];

Xs = [A,B,C,D]
Ys = [A,B,C,D|_];
...

enumerates lists together with prefixes. Note that A, B, C, and D are vari-
ables, as is the underscore _ so that for example [A|_] represents any list
with at least one element.

A more general prediate is append(xs, ys, zs) which holds when zs is
the result of appending xs and ys.

append([], Ys, Ys).
append([X|Xs], Ys, [X|Zs]) :- append(Xs, Ys, Zs).

append can also be used in different directions, and we can also employ it
for alternative definitions of prefix and suffix.

prefix2(Xs, Ys) :- append(Xs, _, Ys).
suffix2(Xs, Ys) :- append(_, Xs, Ys).

Here we have used anonymous variables ‘_’. Note that when several un-
derscores appear in a clauses, each one stands for a different anonymous
variable. For example, if we want to define a sublist as a suffix of a pre-
fix, we have to name the intermediate variable instead of leaving it anony-
mous.

sublist(Xs, Ys) :- prefix(Ps, Ys), suffix(Xs, Ps).

7

6 Sorting

As a slightly larger example, we use a recursive definition of quicksort.
This is particularly instructive as it clarifies the difference between a speci-
fication and an implemention. A specification for sort(xs, ys) would simply
say that ys is an ordered permutation of xs. However, this specification is
not useful as an implementation: we do not want to cycle through all pos-
sible permutations until we find one that is ordered.

Instead we implement a non-destructive version of quicksort, modeled
after similar implementations in functional programming. We use here the
built-in Prolog integers, rather than the unary representation from the pre-
vious lecture. Prolog integers can be compared with n =< m (n is less
or equal to m) and n > m (n is greater than m) and similar predicates,
written in infix notation. In order for these comparisons to make sense, the
arguments must be instantiated to actual integers and are not allowed to be
variables, which constitute a run-time error. This combines two conditions:
the first, which is called a mode, is that =< and < require their arguments to
be ground upon invocation, that is not contain any variables. The second
condition is a type condition which requires the arguments to be integers.
Since these conditions cannot be enforced at compile time, they are signaled
as run-time errors.

Quicksort proceeds by partitioning the tail of the input list into those
elements that are smaller than or equal to its first element and those that
are larger than its first element. It then recursively sorts the two sublists
and appends the results.

quicksort([], []).
quicksort([X0|Xs], Ys) :-

partition(Xs, X0, Ls, Gs),
quicksort(Ls, Ys1),
quicksort(Gs, Ys2),
append(Ys1, [X0|Ys2], Ys).

Partitioning a list about the pivot element X0 is also straightforward.

partition([], _, [], []).
partition([X|Xs], X0, [X|Ls], Gs) :-

X =< X0, partition(Xs, X0, Ls, Gs).
partition([X|Xs], X0, Ls, [X|Gs]) :-

X > X0, partition(Xs, X0, Ls, Gs).

8

Note that the second and third case are both guarded by comparisons. This
will fail if either X or X0 are uninstantiated or not integers. The predicate
partition(xs, x0, ls, gs) therefore inherits a mode and type restric-
tion: the first argument must be a ground list of integers and the second
argument must be a ground integer. If these conditions are satisfied and
partition succeeds, the last two arguments will always be lists of ground
integers. In a future lecture we will discuss how to enforce conditions of
this kind to discover bugs early. Here, the program is small, so we can get
by without mode checking and type checking.

It may seem that the check X > X0 in the last clause is redundant.
However, that is not the case because upon backtracking we might select
the second clause, even if the first one succeeded earlier, leading to an in-
correct result. For example, without this guard the query

?- quicksort([2,1,3], Ys)

would incorrectly return Ys = [2,1,3] as its second solution.
In this particular case, the test is trivial so the overhead is acceptable.

Sometimes, however, a clause is guarded by a complicated test which takes
a long time to evaluate. In that case, there is no easy way to avoid evaluat-
ing it twice, in pure logic programming. Prolog offers several ways to work
around this limitation which we discuss in the next section.

7 Conditionals

We use the example of computing the minimum of two numbers as an ex-
ample analogous to partition, but shorter.

minimum(X, Y, X) :- X =< Y.
minimum(X, Y, Y) :- X > Y.

In order to avoid the second, redundant test we can use Prolog’s condi-
tional construct, written as

A -> B ; C

which solves goal A. If A succeeds we commit to the solution, removing all
choice points created during the search for a proof of A and then solve B.
If A fails we solve C instead. There is also a short form A -> B which is
equivalent to A -> B ; fail where fail is a goal that always fails.

Using the conditional, minimum can be rewritten more succinctly as

9

minimum(X, Y, Z) :- X =< Y -> Z = X ; Z = Y.

The price that we pay here is that we have to leave the realm of pure logic
programming.

Because the conditional is so familiar from imperative and functional
program, there may be a tendency to overuse the conditional when it can
easily be avoided.

8 Cut

The conditional combines two ideas: commiting to all choices so that only
the first solution to a goal will be considered, and branching based on that
first solution.

A more powerful primitive is cut, written as ‘!’, which is unrelated to
the use of the word “cut” in proof theory. A cut appears in a goal position
and commits to all choices that have been made since the clause it appears
in has been selected, including the choice of that clause. For example, the
following is a correct implementation of minimum in Prolog.

minimum(X, Y, Z) :- X =< Y, !, Z = X.
minimum(X, Y, Y).

The first clause states that if x is less or equal to y then the minimum is equal
to x. Moreover, we commit to this clause in the definition of minimum and
on backtracking we do not attempt to use the second clause (which would
otherwise be incorrect, of course).

If we permit meta-calls in clauses, then we can define the conditional
A -> B ; C using cut with

if_then_else(A, B, C) :- A, !, B.
if_then_else(A, B, C) :- C.

The use of cut in the first clause removes all choice points created during
the search for a proof of A when it succeeds for the first time, and also
commits to the first clause of if_then_else. The solution of B will create
choice points and backtrack as usual, except when it fails the second clause
of if_then_else will never be tried.

If A fails before the cut, then the second clause will be tried (we haven’t
committed to the first one) and C will be executed.

Cuts can be very tricky and are the source of many errors, because their
interpretation depends so much on the operational behavior of the pro-
gram rather than the logical reading of the program. One should resist the

10

temptation to use cuts excessively to improve the efficiency of the program
unless it is truly necessary.

Cuts are generally divided into green cuts and red cuts. Green cuts are
merely for efficiency, to remove redundant choice points, while red cuts
change the meaning of the program entirely. Revisiting the earlier code for
minimum we see that it is a red cut, since the second clause does not make
any sense by itself, but only because the the first clause was attempted be-
fore. The cut in

minimum(X, Y, Z) :- X =< Y, !, Z = X.
minimum(X, Y, Y) :- X > Y.

is a green cut: removing the cut does not change the meaning of the pro-
gram. It still serves some purpose here, however, because it prevents the
second comparison to be carried out if the first one succeeds (although it is
still performed redundantly if the first one fails).

A common error is exemplified by the following attempt to make the
minimum predicate more efficient.

% THIS IS INCORRECT CODE
minimum(X, Y, X) :- X =< Y, !.
minimum(X, Y, Y).

At first this seems completely plausible, but it is nonetheless incorrect.
Think about it before you look at the counterexample at the end of these
notes—it is quite instructive.

9 Negation as Failure

One particularly interesting use of cut is to implement negation as finite
failure. That is, we say that A is false if the goal A fails. Using higher-order
techniques and we can implement \+(A) with

\+(A) :- A, !, fail.
\+(A).

The second clause seems completely contrary to the definition of negation,
so we have to interpret this program operationally. To solve \+(A)we first
try to solve A. If that fails we go the second clause which always succeeds.
This means that if A fails then \+(A) will succeed without instantiating
any variables. If A succeeds then we commit and fail, so the second clause

11

will never be tried. In this case, too, no variables are instantiated, this time
because the goal fails.

One of the significant problem with negation as failure is the treatment
of variables in the goal. That is, \+(A) succeeds if there is no instance of
A that is true. On the other hand, it fails if there is an instance of A that
succeeds. This means that free variables may not behave as expected. For
example, the goal

?- \+(X = a).

will fail. According the usual interpretation of free variables this would
mean that there is no term t such that t 6= a for the constant a. Clearly, this
interpretation is incorrect, as, for example,

?- \+(b = a).

will succeed.
This problem is similar to the issue we identified for disequality. When

goals may not be ground, negation as failure should be viewed with dis-
trust and is probably wrong more often than it is right.

There is also the question on how to reason about logic programs con-
taining disequality, negation as failure, or cut. I do not consider this to be a
solved research question.

10 Prolog Arithmetic

As mentioned and exploited above, integers are a built-in data type in Pro-
log with some predefined predicates such as =< or >. You should consult
your Prolog manual for other built-in predicates. There are also some built-
in operations such as addition, subtraction, multiplication, and division.
Generally these operations can be executed using a special goal of the form
t is e which evaluates the arithmetic expression e and unifies the result
with term t. If e cannot be evaluated to a number, a run-time error will re-
sult. As an example, here is the definition of the length predicate for Prolog
using built-in integers.

% length(Xs, N) iff Xs is a list of length N.
length([], 0).
length([X|Xs], N) :- length(Xs, N1), N is N1+1.

As is often the case, the left-hand side of the is predicate is a variable, the
right-hand side an expression.

12

11 Answer

The problem is that a query such as

?- minimum(5,10,10).

will succeed because it fails to match the first clause head.
The general rule of thumb is to leave output variables (here: in the third

position) unconstrained free variables and unify it with the desired output
after the cut. This leads to the earlier version of minimum using cut.

12 References

References

[1] D. Chan. Constructive negation based on the complete database. In
R.A. Kowalski and K.A. Bowen, editors, Proceedings of the 5th Interna-
tional Conference and Symposium on Logic Programming (ICSLP’88), pages
111–125, Seattle, Washington, September 1988. MIT Press.

[2] Joxan Jaffar and Jean-Louis Lassez. Constraint logic programming. In
Proceedings of the 14th Annual Symposium on Principles of Programming
Languages, pages 111–119, Munich, Germany, January 1987. ACM Press.

[3] Dale Miller and Gopalan Nadathur. Higher-order logic programming.
In Ehud Shapiro, editor, Proceedings of the Third International Logic Pro-
gramming Conference, pages 448–462, London, June 1986.

[4] Gopalan Nadathur and Dale Miller. Higher-order logic programming.
In D.M. Gabbay, C.J. Hogger, and J.A. Robinson, editors, Handbook of
Logic in Artificial Intelligence and Logic Programming, volume 5, chapter 8.
Oxford University Press, 1998.

[5] Frank Pfenning, editor. Types in Logic Programming. MIT Press, Cam-
bridge, Massachusetts, 1992.

[6] Peter J. Stuckey. Constructive negation for constraint logic program-
ming. In Proceedings of the 6th Annual Symposium on Logic in Computer
Science (LICS’91), pages 328–339, Amsterdam, The Netherlands, July
1991. IEEE Computer Society Press.

13

	Lists
	Type Predicates
	List Types
	List Membership and Disequality
	Simple List Predicates
	Sorting
	Conditionals
	Cut
	Negation as Failure
	Prolog Arithmetic
	Answer
	References

