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1 Introduction

In this lecture, we design a judgmental formulation of classical logic. To
gain an intuition, we explore various equivalent notions of the essence of
classical reasoning including the Law of the Excluded Middle and Double-
Negation Elimination. Throughout the discussion a common theme is the
indirectness and “dishonesty” of classical proofs, an idea which will later
be key to understanding their computational interpretation. Eventually,
we arrive at a judgmentally parsimonious system based on the principle of
Proof by Contradiction and founded on two new forms of judgment: A is
false (written A false) and contradiction (written #).

2 Example

Classical reasoning is pervasive in classical mathematics, so we begin with
a typical example of a theorem proven using classical methods.

Theorem: Ja, b € R. irrational (a) A irrational (b) A rational(a?)

Proof: Consider \/5\/5: this number is either rational or irra-
tional. Suppose it is rational: then a = V2, b =+2 gives the

required result. Suppose it is not: then a = \/5\/5, b= /2 gives
the required result, as a® = (\/5\/5)\/5 = \/5\/5\/5 =(V2)?=2.
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L7.2 Classical Logic

Although this claims to be a proof of an existential theorem, it gives the
reader no grasp on what numbers actually witness the result—it offers two
possible choices but no further guidance as to which one is correct.

A slightly whimsical characterization of the proof offers a glimpse into
the computational content of classical reasoning. Imagine a prominent
mathematician delivering the above proof aloud as part of a lecture be-
fore a large audience. Initially, he delivers only the first half, saying, “Let
a = /2 and b = /2; then a and b are irrational while a® is rational—trust
me.” Amidst some mumbling, the audience nods and accepts the proof; af-
ter all, he is a very prominent mathematician, and he probably knows what
he’s talking about. But then, halfway through the lecture, a student from
the back suddenly leaps up and exclaims, “His proof is no good—I have

a proof that \/5\/i is irrational!”!. The audience gasps and a murmur runs
through the crowd, but before anyone else can speak, the mathematician
calmly responds, “May I see your proof?” After checking it over, the math-
ematician addresses the crowd again: “My apologies—I misspoke earlier.

What I meant to say was this: Let a = \/5\/5 and b = v/2; then a and b are
irrational—I have this proof, if you don’t believe me!—while a’® = 2 and is
therefore rational.”

The poor student at the back thought she could attain fame and fortune
by debunking the prominent mathematician, but in fact, the mathematician
stole the glory by leveraging her proof for his own ends. Classical proofs
exhibit a similar time-traveling behavior when executed, as we’ll see in the
next lecture.

3 What is classical logic?

Classical logic can be characterized by a number of equivalent axioms:
e Proof by Contradiction
e Law of the Excluded Middle: AV —A
e Double-Negation Elimination: ~——A D> A
e Peirce’'s Law: (ADB)DA)D A

We might consider making the logic we’ve seen so far classical by adding
one or more rules that correspond to these axioms. For instance, we might

Tt is, in fact, though the proof is non-trivial.
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add:

LEM ——A true
AV —A true or A true

Of course, we need only add one or the other, and not both, since they are
interderivable. First, let’'s show how we can derive DNFE from LEM:

——A true —A true
_ iRM u 1 true I
AV —A true A true A true
VE
A true

As you can see, it is precisely the power of having the middle excluded that
lets us turn our proof of =—A true into a proof of L true, and thus a proof
of A true as required.

Using DNE also allows us to derive LEM. Note that since the LEM
rule has no premises, this will have to be a completely closed derivation.
To help elucidate the thought process of a classical prover, we’ll do a step-
by-step derivation. We start bottom up from the conclusion:

AV —A true

If we were to attempt to proceed as we’ve done previously, we would now
have to apply a disjunction-introduction rule, but we have no way of de-
ciding which injection to choose: merely positing all propositions to be true
or not does nothing to make apparent which is the case. We know that this
classical tautology is unprovable intuitionistically, anyhow, so we have no
hope but to begin by employing our classical rule, double-negation elimi-
nation.

——(AV —A) true
AV —A true

DNE
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Since —A is notationally defined to mean A D L, we can take the usual no-
brainer step of applying implication introduction:

u
—(AV —A) true

1 true

D (7
—=(AV —A) true
DNE
AV —A true

Now we are tasked with proving falsehood true: a difficult task, to be sure,
but a glimmer of hope shines through in our sole assumption u. Perhaps
by applying it to an appropriate argument, we can conclude L true as re-
quired:

u
—(AV —A) true

u :
—(AV —A) true AV —A true

oF
1 true
3 u
——(AV —A) true
DNE
AV —A true

At this point, if we were not being careful, we might throw up our hands
and quit. We're right back to where we started, trying to prove AV —A true!
But now we have an extra hypothesis to help us. Undaunted, we pause to
consider: which shall we prove, A or —A? Since we know nothing of the
structure of A, we have no hope of proving it unless an assumption can
yield it, but nothing seems appropriate. So instead, we try for the right
disjunct, -A. We can also go ahead and apply implication introduction
without thinking twice, this time attaining an assumption v that A true.

u v
—(AV —A) true - Atrue

1 true

—A true
u —F Vig
—(AV —A) true AV —Atrue
DF
1 true
3 u
—=(AV —A) true
DNE
AV A true
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This situation is familiar once again: to prove L true, we must use an as-
sumption, and w still seems to be the only one that can help. So we carry
out another implication elimination, feeling only the slightest sense of deja
ou. ..

u v
-(AV —A) true - Atrue

u :
—(AV —A) true AV A true
DF
L true
- A true
u —F Vip
—(AV —A) true AV —A true
Y
1 true
3 u
——(AV —A) true
DNE
AV A true

Once more we are faced with our great adversary, the tertium non datur him-
self! But now the tables are turned: no longer must we cower in fear behind
our security blanket of negation. No, now we can prove A true itself, by the
very assumption we hypothesized to prove —A true! The derivation is now
complete.

v
u A true
—(AV —A) true AV —A true

1 true
u —A true
—(AV —A) true AV —A true
1 true
D)
——(AV —A) true
DNFE
AV —A true

253
DF

VIgr
DF

U

An interesting point to note about this proof is that, save for the last line, it
is a perfectly valid intuitionistic proof. Only at the very end—or beginning,
as we’ve told the story—did we need to appeal to classical reasoning in the
form of DNE. In fact, this observation hints at a more general one: there
is a double-negation translation, discussed in the next lecture, that translates
any classical theorem into one that is intuitionistic valid.

LECTURE NOTES SEPTEMBER 15, 2009



L7.6 Classical Logic

From the intuitionistic portion of the deduction, we can read off a proof
term, the analysis of which will begin to reveal the nature of the computa-
tional interpretation of classical proofs.

fn (u:-(AV-A)) = u(inr (fn (v : A) = u (inl v)))

It begins by supposing a proof v of =(AV —A)—i.e., a refutation of AV -~A—
and then proceeds to debunk that refutation, showing that it must have
been mistaken by driving it to a contradiction. There are two choices of
how to do so: prove A or prove —A. First, it chooses to show that, in fact,
A is the case. Its proof of ~A proceeds as usual, supposing a proof of A
and deriving contradiction. But that contradiction is produced precisely by
changing its mind, saying that the refutation u is mistaken because, in fact,
by the new assumption, A is the case! This time-travelling mind-changing
behavior is essential to classical reasoning, and we’ll see in the next lecture
how this corresponds to programming with continuations.

Although it should be clear that adding either of LEM or DNE would
suffice to make our logic classical, such rules violate the aesthetic princi-
ples we’ve adhered to thus far: both rules contain connectives, but they
are neither introducing nor eliminating any single connective, and both
rules contain multiple instances of a connective, suggesting a certain non-
orthogonality of principles. Must our logic include negation and disjunc-
tion in order to become classical? Perhaps just negation? Or, since negation
as we’ve seen it has been defined as implying falsehood, perhaps implica-
tion and falsehood are the important characteristics.

In fact, we can characterize what it means for a logic to be classical with-
out appealing to any connectives at all, using purely judgmental notions.
This is what we shall now endeavor to do.

4 Towards a better proof theory

Our proof theory for classical logic will be based on the idea of proof by
contradiction. Proof by contradiction is closely related to double-negation
elimination: If we take the rule DNE and require that its premise be proven
by implication-introduction (as we know we may), we find that we could
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replace it by a rule that looks like this:

—A true

TPBC"
A true ¢

If an assumption that —A is true can lead to a proof of falsehood, we may
conclude (classically, anyhow) that A must be true.

But we should keep in mind the design principles that keep our logics
clear and easy to reason about: at most one connective should occur in
a given rule, with all other notions being at the level of judgments. The
proposed rule above still contains two connectives, = and L, and does not
read like an introduction or elimination rule, so we would like to replace
it with a rule that appeals only to judgmental notions. We achieve this by
inventing two new judgment forms, A false and # (contradiction):

k
A false

k
A true PBC

By convention we use letters like k£ and ¢ to denote hypotheses of falsity.
Now, of course, we must explain the meaning of the new judgment
forms A false and #. We understand these judgments through certain prin-
ciples analogous to the Substitution Principle we posited for hypotheses of
the form A true before. First, we require that contradiction yield anything:

D D
Contradiction Principle: If #, then J.

In this principle, J stands for any judgment.

The false judgment is treated somewhat specially: we derive its meaning
from the meaning of true. We take A false as a conclusion to be a judgment-
level notational definition:

A true

Afalse .= #

To prove a proposition false, we assume it true and derive a contradiction.
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We still require hypotheses of the form A false, since they appear in our
classical rule PBC*. To explain the meaning of hypotheses of A false, we
derive a substitution principle from the definition above.

D
k k
A true YA false A false
D & &

Falsity Substitution Principle: If # and J  then J

The final deduction in the above no longer depends on the hypothesis k&
nor on the hypothesis w.

There’s an important difference between this substitution principle and
the one for true hypotheses: we took that substitution principle as a given,
since it arose directly from the meaning of the hypothetical judgment. Here,
though, since we did not directly define A false as a conclusion, we are not
substituting proofs that conclude A false for hypotheses of A false. There-
fore, this substitution principle is one we must prove of our inference rules,
and we use the double-ruled notation to denote the operation embodied
by this proof. (An alternative notation is [u. D/k] £.) We defer any further
discussion until later when we learn rule induction.

We have one more thing to define before the system is complete, and
that is how to derive contradiction! With the rules given above, there are
currently no ways to do so. Contradiction means that some proposition is
both true and false, so we take the following rule:

A false A true
J

contra

Note that we do not suppose the rule to conclude # directly, since we wish
to ensure that the Contradiction Principle above remains true. Instead, we
allow the rule to conclude any judgment J, including #.

This concludes the discussion of the judgments A false and #. There
is one remaining important technical matter to deal with, though: since
we have introduced one new judgment that may appear as a conclusion,
#, we must revisit any rules we previously defined that were supposed
to conclude an arbitrary conclusion. In particular, the rules VE*" and LE
must be generalized to allow a conclusion of any judgment, and not merely
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one of the form C true?:

n v
A true B true

AV B true J J 1 true
VB
J J

To show an example of these rules in action, we derive Peirce’s Law,
one of the characterizations of classical logic mentioned above. We show
only the final deduction, but it has a flavor very similar to the derivation of
AV —A from DNE.

k v
A false A true

contra
B true
u — DOJY
(AD B)D A true AD B true
k OF
A false A true
contra
k
A true PBC

((ADB)DA)DA o1

Note the two uses of the hypotheses k that A false, which is similar to the
two uses of the refutation of AV —A in the derivation of LEM above. Notice
also the two uses of the rule contra to conclude two different judgments.

Negation revisited. Armed with our new judgmental notions, we can
now give a direct definition of negation rather than one that simply defines
it in terms of implication and falsehood. The new rules are as follows:

u k
A true A false
# o —A true J .
~Atrue J b

The introduction rule essentially amounts to saying, “—A true if A false,”
but replacing A false with its judgmental definition. The elimination rule

2We would also have to similarly generalize the existential elimination rule, 3£, but in
the present lecture we treat only the propositional fragment.
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lets you extract A false from a proof of —A true, but since we only allow
A false as a hypothesis, the rule introduces a new scope with an extra as-
sumption rather than simply concluding A false directly.

This elimination rule is locally sound, as witnessed by the following
local reduction, which makes use of the Falsity Substitution Principle:

n
A true L
D A false D L
# —Ju E Afalse
—A true J o P
J =R g

It is also locally complete; we can expand an arbitrary deduction of - A true
in two ways:

k U
A false A true

contra
D *_
—A true —A true
D — —Ek
—A true E —A true
k U
A false A true
D contra
—A true #
—Ek
D #
— _‘Iu
—A true E —A true

Note how the elimination rule can be used to conclude either # or —A true.
To illustrate the use of negation, we give one final example deduction,
a proof of the inverse contrapositive:

k w
B false B true

contra

—T # —Jv € v

—B DA true —B true Afalse A true
T, OF 4 contra
—A true gt
k
B true PBCU
AD B true

U

D
(-BD>-A)DAD B true
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The rules for classical logic are summarized in Figure 1. It is worth not-
ing that the only rule which makes this logic actually classical is the rule
of proof by contradiction, PBC*. All of the other rules, including the new,
direct explanation of negation, are perfectly valid from an intuitionistic per-
spective: intuitionists still deal with falsity and contradiction, just in a more
controlled fashion.

The rule PBC* however is problematic from a verificationist perspec-
tive, because it changes the meaning of A true: a proposition’s meaning
is no longer derived from its verifications, since we may now choose to
prove any proposition by contradiction. It is this retroactive change to the
meanings of our connectives that now allows us to prove things like the
law of the excluded middle or double-negation elimination. Our carefully
considered approach has been irreparably compromised.
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Judgmental Definitions

A true
: A false A true
) EpSE— t
A false .= # J comra
Classical Rule
k
A false
# PBC*
A true
Changed Rules
n v
A true B true
AV B true J J 1 true
7 v EwY 7 1F
Rules for Negation
k
n
A true A false
# I —A true J .
—A true B J —E

Figure 1: Rules for classical natural deduction
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