
Lecture Notes on
Constructive Logic: Overview

15-317: Constructive Logic
Frank Pfenning

Lecture 1
August 25, 2009

1 Introduction

According to Wikipedia, logic is the study of the principles of valid infer-
ences and demonstration. From the breadth of this definition it is immedi-
ately clear that logic constitutes an important area in the disciplines of phi-
losophy and mathematics. Logical tools and methods also play an essential
role in the design, specification, and verification of computer hardware and
software. It is these applications of logic in computer science which will be
the focus of this course. In order to gain a proper understanding of logic
and its relevance to computer science, we will need to draw heavily on the
much older logical traditions in philosophy and mathematics. We will dis-
cuss some of the relevant history of logic and pointers to further reading
throughout these notes. In this introduction, we give only a brief overview
of the goal, contents, and approach of this class.

2 Topics

The course is divided into four parts:

I. Proofs as Evidence for Truth

II. Proofs as Programs

III. Proof Search as Computation

IV. Substructural and Modal Logics

LECTURE NOTES AUGUST 25, 2009



L1.2 Constructive Logic: Overview

Proofs are central in all parts of the course, and give it its constructive na-
ture. In each part, we will exhibit connections between proofs and forms
of computations studied in computer science. These connections will take
quite different forms, which shows the richness of logic as a foundational
discipline at the nexus between philosophy, mathematics, and computer
science.

In Part I we establish the basic vocabulary and systematically study
propositions and proofs, mostly from a philosophical perspective. The
treatment will be rather formal in order to permit an easy transition into
computational applications. We will also discuss some properties of the
logical systems we develop and strategies for proof search. We aim at a sys-
tematic account for the usual forms of logical expression, providing us with
a flexible and thorough foundation for the remainder of the course. We will
also highlight the differences between constructive and non-constructive
reasoning. Exercises in this section will test basic understanding of logical
connectives and how to reason with them.

In Part II we focus on constructive reasoning. This means we consider
only proofs that describe algorithms. This turns out to be quite natural in
the framework we have established in Part I. In fact, it may be somewhat
surprising that many proofs in mathematics today are not constructive in
this sense. Concretely, we find that for a certain fragment of logic, con-
structive proofs correspond to functional programs and vice versa. More
generally, we can extract functional programs from constructive proofs of
their specifications. We often refer to constructive reasoning as intuitionis-
tic, while non-constructive reasoning is classical. Exercises in this part ex-
plore the connections between proofs and programs, and between theorem
proving and programming.

In Part III we study a different connection between logic and programs
where proofs are the result of computation rather than the starting point as
in Part II. This gives rise to the paradigm of logic programming where the
process of computation is one of systematic proof search. Depending on
how we search for proofs, different kinds of algorithms can be described at
a very high level of abstraction. Exercises in this part focus on exploiting
logic programming to implement various algorithms in concrete languages
such as Prolog.

In Part IV we study logics with more general and more refined notions
of truth. For example, in temporal logic we are concerned with reasoning
about truth relative to time. Another example is the modal logic S5 where
we reason about truth in a collection of worlds, each of which is connected
to all other worlds. Proofs in this logic can be given an interpretation as dis-

LECTURE NOTES AUGUST 25, 2009



Constructive Logic: Overview L1.3

tributed computation. Similarly, linear logic is a substructural logic where
truth is ephemeral and may change in the process of deduction. As we will
see, this naturally corresponds to imperative programming.

3 Goals

There are several related goals for this course. The first is simply that we
would like students to gain a good working knowledge of constructive
logic and its relation to computation. This includes the translation of in-
formally specified problems to logical language, the ability to recognize
correct proofs and construct them.

The second set of goals concerns the transfer of this knowledge to other
kinds of reasoning. We will try to illuminate logic and the underlying
philosophical and mathematical principles from various points of view.
This is important, since there are many different kinds of logics for rea-
soning in different domains or about different phenomena1, but there are
relatively few underlying philosophical and mathematical principles. Our
second goal is to teach these principles so that students can apply them in
different domains where rigorous reasoning is required.

A third set of goals relates to specific, important applications of logic in
the practice of computer science. Examples are the design of type systems
for programming languages, specification languages, or verification tools
for finite-state systems. While we do not aim at teaching the use of par-
ticular systems or languages, students should have the basic knowledge to
quickly learn them, based on the materials presented in this class.

These learning goals present different challenges for students from dif-
ferent disciplines. Lectures, recitations, exercises, and the study of these
notes are all necessary components for reaching them. These notes do not
cover all aspects of the material discussed in lecture, but provide a point
of reference for definitions, theorems, and motivating examples. Recita-
tions are intended to answer students’ questions and practice problem solv-
ing skills that are critical for the homework assignments. Exercises are a
combination of written homework to be handed in at lecture and theorem
proving or programming problems to be submitted electronically using the
software written in support of the course. A brief tutorial and manual are
available with the on-line course material.

1for example: classical, intuitionistic, modal, second-order, temporal, belief, linear, rele-
vance, affirmation, . . .

LECTURE NOTES AUGUST 25, 2009


	Introduction
	Topics
	Goals

