
Constructive Logic (15-317), Fall 2009

Assignment 10: Bottoms Up!

William Lovas (wlovas@cs)

Out: Friday, November 20, 2009
Due: Thursday, December 3, 2009 (before class)

Celebrate the final assignment of the course with bottom-up logic programming!
In this assignment, you’ll experiment with various bottom-up logic programs, includ-
ing both saturating programs and stateful fact-consuming programs. The problems
ask you to write programs using a bottom-up linear logic programming language
called Lollibot; see Appendix A for a brief primer.

Submit your Lollibot code by copying it to the directory

/afs/andrew/course/15/317/submit/<userid>/hw10

where <userid> is replaced with your Andrew ID. Some problems ask you to analyze
the complexity of your programs; you may do so in comments.

You have two weeks to complete this assignment, thanks to Thanksgiving. Enjoy!

Note: If you have any difficulties with the Lollibot implementation, please send
an email to Rob Simmons (rjsimmon@cs.cmu.edu) and myself. We’ll address any
problems as promptly as possible!

1 Saturating Logic Programming (25 points)

1.1 Program Analysis: Reaching Definitions

In lecture, we saw how liveness analysis could be expressed succinctly as a saturating
bottom-up (forward search) logic program. Many other standard dataflow analyses
are similarly natural in the bottom-up style.

Many optimizations and program analyses require that we know the reaching
definitions for a program point. A definition of the variable x at line l of a program
reaches a line k if there is some program path between l and k along which x is not
redefined.

Recall the simple command language from lecture, recapitulated in Figure 1. An
instruction is either an assignment, a conditional branch, an unconditional branch,
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Concrete syntax Lollibot notation

l : x = op(y, z) !inst l (assign x op y z)
l : if x goto k !inst l (if x k)
l : goto k !inst l (goto k)
l : halt !inst l halt

Figure 1: A simple command language.

or the halt instruction. The commands of a program are represented in Lollibot as
persistent facts in the initial database.

Task 1 (10 pts). Write a saturating predicate reaches L X K which holds after sat-
uration if the definition of X at line L reaches line K. Put your code in a file called
reaches.lob.

Task 2 (5 pts). Analyze the complexity of your program: give an asymptotic upper
bound on the size of the saturated database, annotate each rule with an asymptotic
bound on its number of prefix firings, and use these to compute an asymptotic bound
on the running time of the program as a whole.

1.2 Bottom-Up from Top-Down: Magic Sets

Recall the magic templates transformation (or magic sets transformation) from lecture, a
general procedure for converting a terminating top-down (backward search) logic
program into a saturating bottom-up (forward search) logic program. To apply the
transformation, we must know the intended mode of the predicate we’re converting.
First, we create an auxiliary predicate that generates all of the inputs we care about—
our initial database will be seeded with this predicate applied to the inputs of our
query. Then, we guard all of the clauses of the original top-down backward search
predicate with calls to the auxiliary predicate in order to ensure that we only generate
facts that are pertinent to our query.

For example, consider the plus(+M, +N, -P) predicate on natural numbers.

plus(z, N, N). %% bw clause 1

plus(s(M), N, s(P)) :- %% bw clause 2

plus(M, N, P).

Our first step is to create the auxiliary predicate that generates all of the necessary
inputs. We call this predicate go-plus(M, N), and it only operates on the inputs of
the plus predicate. Its clauses mimic the input parts of the recursive clauses of plus,
but swapping the premise and the conclusion.
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go-plus(M, N) :- %% go clause

go-plus(s(M), N).

Intuitively, this clause says that if we want to compute the addition of s(M) and N,
we may need to compute the addition of M and N, so the conclusion records that fact
in the database.

Next, we guard the clauses of the original plus predicate with go-plus facts in
order to restrict the set of plus facts forward search will generate to only the ones
that are pertinent to our query.

plus(z, N, N) :- %% fwd clause 1

go-plus(z, N).

plus(s(M), N, s(P)) :- %% fwd clause 2

go-plus(s(M), N),

plus(M, N, P).

Now, to use our new bottom-up version of plus to add two numbers like 2 and
3, we seed the initial database with go-plus(2, 3) and run the rules to saturation.
Then we look in the database for a fact of the form plus(2, 3, X); if we find one,
the term X is our answer.

Rewriting everything in the forward notation of Lollibot—and taking care to
make all of the predicates persistent along the way—we have:

!go-plus (s M) N %% go clause

-o !go-plus M N.

!go-plus z N %% fwd clause 1

-o !plus z N N.

!go-plus (s M) N, %% fwd clause 2

!plus M N P

-o !plus (s M) N (s P).

% test by seeding initial database:

%exec * !go-plus (s (s z)) (s (s (s z))).

If we put this code into a file plus.lob, we can run lollibot on it to get the following
output:

=== plus.lob ===

!go-plus (s M) N -o !go-plus M N.

!go-plus z N -o !plus z N N.

!go-plus (s M) N, !plus M N P -o !plus (s M) N (s P).
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%exec * !go-plus (s (s z)) (s (s (s z))).

-- After 0 steps:

-- !plus (s(s(z))) (s(s(s(z)))) (s(s(s(s(s(z)))))),

!plus (s(z)) (s(s(s(z)))) (s(s(s(s(z))))),

!plus z (s(s(s(z)))) (s(s(s(z)))),

!go-plus z (s(s(s(z)))),

!go-plus (s(z)) (s(s(s(z)))),

!go-plus (s(s(z))) (s(s(s(z))))

The first fact listed in the saturated database tells us our answer: 5.
In lecture, we saw how to apply the magic templates transformation to the predi-

cate append(+Xs, +Ys, -Zs), the top-down append predicate taking two input lists
and returning their concatenation:

append(nil, Zs, Zs).

append(cons(X, Xs), Ys, cons(X, Zs)) :-

append(Xs, Ys, Zs).

But remember from our Prolog days that we can interpret this same code with mode
(-, -, +) and use it to enumerate all the ways of splitting a given list into two
pieces.

Task 3 (5 pts). Convert the top-down version ofappend(-Xs, -Ys, +Zs) to a bottom-
up logic program using the magic templates transformation. Put your code in a file
called append.lob.

Task 4 (5 pts). Analyze the complexity of the transformed program: give an asymp-
totic upper bound on the size of the saturated database, annotate each rule with
an asymptotic bound on its number of prefix firings, and use these to compute an
asymptotic bound on the running time of the program as a whole.

2 Imperative Logic Programming (15 points)

2.1 Making Change

Linear logic programming can be used to naturally model many imperative state-
changing systems like the “blocks world” example we saw in lecture.

Consider a state-transition system whose states are collections of facts of the form
penny, nickel, dime, and quarter representing collections of coins. Two states are
equivalent if their coins have the same monetary value.

Task 5 (5 pts). Write clauses representing transitions that allow us to replace any set
of coins in our database with any other set of coins of equal value. Like the linear
logic model of blocks world, your rules need not terminate in any sense—they should
just make it possible to transition from any state to any equivalent one. Put your
code in a file called change.lob.
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Concrete syntax Lollibot notation

z z

s(e) s e
e1 + e2 plus e1 e2

e1 × e2 times e1 e2

s(n) s n

Figure 2: A simple arithmetic language.

2.2 Evaluating Arithmetic Expressions

State-transition systems can be used to model algorithms in a way that is imminently
parallelizable.

Consider the simple arithmetic language with unary natural numbers:

e ::= z | s(e) | e1 + e2 | e1 × e2

n ::= z | s(n)

This language can be represented by Lollibot terms as shown in Figure 2.
We can represent parallel arithmetic evaluation by a linear state-transition system

as follows:

• A state is a collection of facts eval(e1), ..., eval(em), result(n), where
e1, . . . , em are expressions to be evaluated and summed up, and n is the result
accumulated so far,

• An initial state is one in which there is a single eval(e) fact and a single fact
result(z) representing a starting point of zero, and

• A final state is one in which there are no more facts of the form eval(ei) and
there is a single fact result(n) representing the final accumulated result of
evaluation.

The transitions of the system replace individual eval(e) facts with other facts in a
way that moves ever towards a final state.

Task 6 (10 pts). Implement the arithmetic evaluation state-transition system in Lol-
libot. Put your code in a file called eval.lob.

Extra Credit Task 1 (3 extra credit pts). What changes are required to the specification
of the state transition system if we want to support negation expressions, neg(e)?
Extend your bottom-up evaluator to handle negations.
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A Lollibot Primer

Lollibot is a bottom-up linear logic programming language that implements satu-
ration for persistent facts and quiescence for ephemeral facts, the two termination
strategies from lecture. Its syntax is similar to Twelf’s, with a few important caveats:

• Rules are not named, and terms and predicates need not be declared

• Rules are written only in the left-to-right direction

• Instead of ->, Lollibot uses the linear logic lollipop, rendered in ASCII as -o

• Rules may have multiple premises and multiple conclusions, using comma ,
to join facts and () to represent none at all

• Predicates are treated as ephemeral unless marked with a bang !

To run a set of rules, you use one of the following declarations:

%exec <steps> <initial facts>.

%trace <steps> <initial facts>.

where <steps> is the number of steps to run for and <initial facts> is the initial
database of facts, separated by commas. To run until saturation or quiescence, use
a <steps> value of *. The %exec declaration displays only the final database, while
the %trace declaration additionally displays each step of execution.1

As a simple example illustrating the new syntax, recall the linear logic program
from lecture that decomposes a list and then reassembles it into a permutation of a
sublist, possibly dropping some elements.

% list Xs --> perm Ys, where Ys is a permutation of a sublist of Xs.

list (cons X Xs) -o elem X, list Xs.

list nil -o perm nil.

elem X -o ().

elem X, perm Xs -o perm (cons X Xs).

% test case: permute [1, 2, 3], showing all steps

%trace * list (cons 1 (cons 2 (cons 3 nil))).

Lollibot also has built-in primitive (non-saturating) predicates for testing equality
and disequality of terms. To test whether X and Y are equal, use the predicate X == Y.
To test whether X and Y are unequal, use the predicate X <> Y. For instance, the
following code generates all unequal pairs of items:

!item A, !item B, A <> B -o !pair A B.

%exec * !item(1), !item(2), !item(3).

Many more Lollibot examples are available from the course’s Software page.

1... but saturation is regarded as a single step.
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