
Constructive Logic (15-317), Fall 2009

Assignment 7: Programming in Prolog

William Lovas (wlovas@cs)

Out: Thursday, October 22, 2009
Due: Thursday, October 29, 2009 (before class)

In this assignment, you’ll practice programming in Prolog in order to learn the
idiosyncracies and idioms particular to the discipline of logic programming. By the
end of the assignment, you will be an expert Prolog hacker, and the basic ideas you
learn in Prolog will carry over to other logic programming languages we encounter
as the semester progresses.

The written portion of your work (Section 1) may be submitted at the beginning of
class, typeset or handwritten, but alternatively, you may submit the written portion
in comments as part of your programming portion.

The programming portion of your work (Sections 2 and 3) should be submitted
via AFS by putting your code in a file hw07.pl and copying it to the directory

/afs/andrew/course/15/317/submit/<userid>/hw07

where <userid> is replaced with your Andrew ID.
For the programming problems, try to make your code as clean and general as pos-

sible, leveraging the intrinsic expressive power of logic programming to obtain clear
and elegant programs. You may find it useful to refer to the GNU Prolog Manual, in
particular the chapter on Prolog built-in predicates.

1 One Cut, Two Cut, Red Cut, Green Cut (8 points)

Recall the Prolog control mechanism !, pronounced “cut”: as a subgoal, it always
succeeds, but when it does so it has the side effect of forcing Prolog’s proof search to
commit to all choices made thus far; proof search never backtracks past a cut.

Remember also that cuts can be divided into red cuts and green cuts. Green cuts do
not affect the meaning of a program: any predicate that holds when the cut is deleted
still holds when the cut is present. Red cuts, on the other hand, prune search that
might lead to new solutions, and in this way they change the meaning of the logic
program. Sometimes the question of whether a cut is red or green depends upon our
mode interpretation of the predicate in whose definition the cut appears.

1

http://www.gprolog.org/manual/html_node/index.html
http://gprolog.org/manual/html_node/gprolog023.html

Task 1 (8 pts). For each the following Prolog code fragments, identify the cut as
green or red. Justify your choice with a short explanation, and be sure to state any
assumptions you make.

Fragment 1

doFor(B, what) :- klondike_bar(B).

doFor(love, that) :- !, fail.

doFor(love, _).

Fragment 2

partition([], _, [], []).

partition([X|Xs], X0, [X|Ls], Gs) :-

X =< X0, !, partition(Xs, X0, Ls, Gs).

partition([X|Xs], X0, Ls, [X|Gs]) :-

X > X0, partition(Xs, X0, Ls, Gs).

Fragment 3

search(X, leaf(X)).

search(X, node(Left, Right)) :- search(X, Left), !.

search(X, node(Left, Right)) :- search(X, Right).

Fragment 4

classify(Msg, spam) :- is_spam(Msg), !.

classify(Msg, ham).

2 Sorting Lists (16 points)

In Lecture Notes 14, we saw how to code the quicksort algorithm in Prolog. Here,
we’ll consider two other sorting algorithms.

2.1 Bogo sort

Prolog can compactly and elegantly represent a sorting algorithm that is even worse
than insertion sort. The canonical bogo sort works by randomly permuting a list
until it becomes sorted. Here, we’ll consider a deterministic variant that searches for
a sorted permutation systematically.

2

http://www.cs.cmu.edu/~fp/courses/15317-f09/lectures/14-prolog.pdf
http://en.wikipedia.org/wiki/Bogosort

Task 2 (6 pts). Write a predicate sorted([integer])which holds of any ≤-ordered
list of Prolog integers. Then write a predicate perm([integer], [integer])which
holds whenever its first argument is a permutation of its second. Use these to-
gether to implement a concise version of deterministic bogo sort as a predicate
bogosort([integer], [integer]) that searches for a sorted permutation of its first
argument. Your predicate should be usable as a sorting function, at least on very
small inputs.

2.2 Merge sort

Prolog can also compactly and elegantly represent efficient sorting algorithms like
merge sort. To merge sort a list, first split it into two roughly equal halves; then,
recursively merge sort the two halves; finally merge the two sorted halves into a
sorted list.

Task 3 (10 pts). Implement a predicate mergesort(+[integer], -[integer])which
merge sorts a given list, returning the sorted list. Your predicate should be usable as
a sorting function on much larger inputs than bogosort.

3 Arithmetic Expressions (16 points)

Prolog can be used to do much more than list processing. Many symbolic process-
ing tasks can elegantly be written as Prolog programs, in much the same way as
symbolic tasks can elegantly be written as ML programs. Of course, the logic pro-
gramming paradigm changes the game quite a bit: an elegant ML program might
not transliterate directly to an elegant Prolog program, nor vice versa.

In this section we’ll explore symbolic processing tasks involving a small language
of arithmetic expressions with numerical constants, addition, and multiplication.

e ::= n | e1 + e2 | e1 × e2

The following Prolog type predicate recognizes expressions built using the construc-
tors eInt, ePlus, and eTimes:

exp(ePlus(E1, E2)) :- exp(E1), exp(E2).

exp(eTimes(E1, E2)) :- exp(E1), exp(E2).

exp(eInt(N)) :- integer(N).

Task 4 (6 pts). Write an evaluator predicate eval(+exp, -integer) that evaluates
an arithmetic expression to its value.

3.1 Parsing

If we isolate certain terms as tokens, we can talk about writing a parser for arithmetic
expressions using Dijkstra’s classic shunting yard algorithm.

We’ll use the following constructors for tokens:

3

http://en.wikipedia.org/wiki/Shunting-yard_algorithm

token(tLparen). token(tRparen). % parentheses

token(tPlus). token(tTimes). % operators

token(tInt(N)) :- integer(N). % integer constants

A parser for arithmetic expressions is one that transforms a list of tokens into an
expression.

The shunting yard algorithm works using two stacks, a stack of operators and a
stack of operands. When we say

reduce an expression onto the operand stack,

we mean

pop the top operator from the operator stack and the top two operands
from the operand stack, build an expression out of them and push that
expression onto the operand stack.

With this in mind, we can describe (a simplified variant of) the algorithm as follows.
Repeatedly consider each token in the input list in turn:

• If the token is a number (tInt(N) in our syntax), then remove it from the input
list and push it onto the operand stack.

• If the token is an operator (tPlus or tTimes), then

– if the operator has stronger binding precedence than the one on top of the
operator stack, or if the operator stack is empty, remove the operator from
the input list and push it onto the operator stack,

– if the operator has weaker binding precedence than the one on top of the
operator stack, then leave it in the input list and reduce an expression onto
the operand stack.

• If the token is a left paren (tLparen), then remove the operator from the input
list and push it onto the operator stack.

• If the token is a right paren (tRparen), then

– if the operator on top of the operator stack is a left paren (tLparen), the
remove the right paren from the input list and pop the left paren from the
operator stack,

– otherwise reduce an expression onto the operand stack.

• If the input list is empty, then

– if there is one expression on the operand stack, then return that expression
as the final result,

– otherwise, reduce an expression onto the operand stack.

4

The main idea behind this algorithm is to put off processing an operator until
we know we have parsed both of its operands. This is accomplished by keeping the
operator stack in precedence order, weakest at the bottom to strongest at the top.
Figures 1 and 2 show two examples of its execution, where stacks are written with
their tops to the left. Tokens are represented by characters, and expression trees have
the form op(x, y).

Task 5 (10 pts). Write a predicate parse(+[token], -exp) that implements the
shunting yard algorithm. Remember to try to make full use of the expressive power
of logic programming to obtain an elegant program.

You may find GNU Prolog’s trace facility useful to debug your program: it prints
each predicate upon entry, exit, and failure. To turn it on, press ˆC at the prompt and
then press t.

Extra Credit Task 1 (3 extra credit pts). The algorithm as specified above will succeed
on inputs like [+, 3, 5], [2, +, *, 3, 5], and [(,), 5], which do not represent valid infix
expressions. Extend your code to rule out these cases, and describe your solution in
comments.

5

Input Operands Operators Notes

2, +, 3, *, 5 Initial state

+, 3, *, 5 2 Numbers always get pushed

3, *, 5 2 +

*, 5 3, 2 +

5 3, 2 ×,+ × binds stronger than +, so × pushed

5, 3, 2 ×,+

×(3, 5), 2 + Input is empty, so reduce an expression

+(2,×(3, 5)) Final result is on top of operand stack

Figure 1: Parse for the expression 2 + 3 ∗ 5.

Input Operands Operators Notes

2, *, 3, +, 5 Initial state

*, 3, +, 5 2 Numbers always get pushed

3, +, 5 2 ×

+, 5 3, 2 ×

+, 5 ×(2, 3) + binds weaker than ×, so reduce

5 ×(2, 3) + Now + can be pushed

5, ×(2, 3) +

+(×(2, 3), 5) Input is empty, so reduce an expression

Figure 2: Parse for the expression 2 ∗ 3 + 5.

6

	One Cut, Two Cut, Red Cut, Green Cut (8 points)
	Sorting Lists (16 points)
	Bogo sort
	Merge sort

	Arithmetic Expressions (16 points)
	Parsing

