
Constructive Logic (15-317), Fall 2009

Assignment 5: Sequent Calculus for Proof Search

William Lovas (wlovas@cs)

Out: Thursday, October 8, 2009
Due: Thursday, October 15, 2009 (before class)

In this assignment, you will explore the G4ip sequent calculus and see how it may
be used to build a simple yet realistic theorem prover for intuitionistic propositional
logic. By the end of the assignment,you will have implemented a sound and complete
proof search procedure capable of proving automatically any of the propositional
theorems you’ve proven manually this semester using Tutch.

The written portion of your work (Sections 1 and 2) should be submitted at the
beginning of class. As usual, if you are familiar with LATEX, you are encouraged to use
this document as a template for typesetting your solutions, but you may alternatively
write your solutions neatly by hand.

The programming portion of your work (Section 3) should be submitted via AFS
by copying your code to the directory

/afs/andrew/course/15/317/submit/<userid>/hw05

where <userid> is replaced with your Andrew ID.

1 Manual Theorem Proving (10 points)

During the last few lectures, we have discussed various forms of sequent calculi and
considered how they might be used to build a decision procedure for intuitionistic
propositional logic. One particularly simple formulation amenable to implementa-
tion is Dyckhoff’s contraction-free sequent calculus G4ip. (See Appendix A for a
recap of the rules.)

First, let’s get some practice using G4ip as a proof system.

Task 1 (5 pts). Give a proof of the sequent · −→ ((P ⊃ Q) ⊃ R) ∧ ((P ⊃ Q) ⊃ S) ⊃ (P ⊃
Q) ⊃ R using the rules of G4ip. (P, Q, R, and S all stand for atomic propositions.)

Task 2 (5 pts). Give a proof of the sequent · −→ ((P ∨ Q) ∧ R ⊃ S) ⊃ R ∧ (Q ∨ P) ⊃ S
using the rules of G4ip. (Again, P, Q, R, and S all stand for atomic propositions.)

1

2 Cut Elimination (5 points)

The Cut Admissibility theorem is a crucial tool that helps us demonstrate the ex-
pressivity of our logic: if we can prove something, then we can use it as a lemma
towards proving something else. We usually prove this theorem by a nested induc-
tion, first on the structure of the cut formula, and then on the structure of the two
given derivations.

The G4ip calculus also admits such a theorem, and it is proven by roughly
similar means (though some additional structural properties are required for the
cases involving compound left rules).

Theorem (Cut Admissibility for G4ip). If Γ −→ A and Γ,A −→ C, then Γ −→ C.

Proof. By nested induction, first on the weight of the cut formula A, and then on the
structure of the derivationsD of Γ −→ A and E of Γ,A −→ C. �

Task 3 (5 pts). Prove the case of G4ip’s Cut Admissibility theorem where A is P ⊃ B,
D is derived by ⊃R, and E is derived by P⊃L. You may assume without proof the
following structural properties of G4ip:

Lemma (Weakening). If Γ −→ C, then Γ,A −→ C.

Lemma (Contraction). If Γ,A,A −→ C, then Γ,A −→ C.

Lemma (Identity). For all A, we can derive Γ,A −→ A.

2

3 Automated Theorem Proving (25 points)

Because G4ip’s rules all reduce the “weight” of the formulas making up the se-
quent when read bottom-up, it is straightforward to see that it represents a decision
procedure even without the benefit of loop checking. The rules themselves are non-
deterministic, though, so one must invest some effort in extracting a deterministic
implementation from them.

Task 4 (25 pts). Implement a proof search procedure based on the G4ip calculus. Ef-
ficiency should not be a primary concern, but see the hints below regarding invertible
rules. Strive instead for correctness and elegance, in that order.

You should write your implementation in Standard ML.1 Some starter code is
provided in the file prop.sml to clarify the setup of the problem and give you some
basic tools for debugging (see Figure 1). Implement a structure G4ip matching the
signature G4IP. A simple test harness assuming this structure is given in the structure
Test in the file test.sml. Feel free to post any additional interesting test cases you
encounter to the course bulletin board.

Here are some hints to help guide your implementation:

• Be sure to apply all invertible rules before you apply any non-invertible rules.
Recall that the only non-invertible rules in G4ip are∨R1,∨R2, and⊃⊃L, but that
P⊃L and the init rule cannot always be applied asynchronously. One simple
way to ensure that you do inversions first is to maintain a second context of
non-invertible propositions and to process it only when the invertible context
is exhausted.

• When it comes time to perform non-invertible search, you’ll have to consider
all possible choices you might make. Many theorems require you to use your
non-invertible hypotheses in a particular order, and unless you try all possible
orders, you may miss a proof.

• The provided test cases can help you catch many easy-to-make errors. Test
your code early and often! If you come up with any interesting test cases of
your own that help you catch other errors, we encourage you to share them via
the course bulletin board.

There are many subtleties and design decisions involved in this task, so don’t leave
it until the last minute!

1If you are not comfortable writing in Standard ML, you should contact the instructors and the TA
to work out an alternate arrangement.

3

signature PROP =

sig

datatype prop = (* A ::= *)

Atom of string (* P *)

| True (* | T *)

| And of prop * prop (* | A1 & A2 *)

| False (* | F *)

| Or of prop * prop (* | A1 | A2 *)

| Implies of prop * prop (* | A1 => A2 *)

val Not : prop -> prop (* ˜A := A => F *)

val toString : prop -> string

end

structure Prop :> PROP = ...

signature G4IP =

sig

(* [decide A = true] iff . ===> A has a proof,

[decide A = false] iff . ===> A has no proof *)

val decide : Prop.prop -> bool

end

Figure 1: SML starter code for G4ip theorem prover.

4

A Complete G4ip Rules

Init Rule

Γ,P −→ P
init

Ordinary Rules

Γ −→ ⊤
⊤R

Γ −→ C

Γ,⊤ −→ C
⊤L

Γ −→ A Γ −→ B

Γ −→ A ∧ B
∧R

Γ,A,B −→ C

Γ,A ∧ B −→ C
∧L

(no ⊥R rule) Γ,⊥ −→ C
⊥L

Γ −→ A

Γ −→ A ∨ B
∨R1

Γ −→ B

Γ −→ A ∨ B
∨R2

Γ,A −→ C Γ,B −→ C

Γ,A ∨ B −→ C
∨L

Γ,A −→ B

Γ −→ A ⊃ B
⊃R

Compound Left Rules

Γ,P,B −→ C

Γ,P,P ⊃ B −→ C
P⊃L

Γ,B −→ C

Γ,⊤ ⊃ B −→ C
⊤⊃L

Γ,D ⊃ E ⊃ B −→ C

Γ,D ∧ E ⊃ B −→ C
∧⊃L

Γ −→ C

Γ,⊥ ⊃ B −→ C
⊥⊃L

Γ,D ⊃ B,E ⊃ B −→ C

Γ,D ∨ E ⊃ B −→ C
∨⊃L

Γ,D,E ⊃ B −→ E Γ,B −→ C

Γ, (D ⊃ E) ⊃ B −→ C
⊃⊃L

5

	Manual Theorem Proving (10 points)
	Cut Elimination (5 points)
	Automated Theorem Proving (25 points)
	Complete G4ip Rules

