
Constructive Logic (15-317), Fall 2009

Assignment 2: Quantifiers and Proof Terms

William Lovas (wlovas@cs)

Out: Thursday, September 10, 2009
Due: Thursday, September 17, 2009 (before class)

Previously, your work in this course has concerned only the propositional
fragment of intuitionistic logic. In this homework, you will delve into the excit-
ing world of first-order logic by solving problems involving the quantifiers∀ and
∃. Furthermore, you’ll have a chance to explore the Curry-Howard correspon-
dence between logic and computation by writing proof terms representing your
deductions. Finally, you’ll continue to expand your understanding of harmony
in definitions of logics by playing with a new quantifier.

The Tutch portion of your work (Section 1) should be submitted electronically
using the command

$ /afs/andrew/course/15/317/bin/submit -r hw02 <files...>

from any Andrew server. You may check the status of your submission by
running the command

$ /afs/andrew/course/15/317/bin/status hw02

If you have trouble running either of these commands, email William.
The written portion of your work (Section 2) should be submitted at the

beginning of class. If you are familiar with LATEX, you are encouraged to use this
document as a template for typesetting your solutions, but you may alternatively
write your solutions neatly by hand.

1 Tutch Proofs and Proof Terms (25 points)

Tutch allows you to give an annotated proof for a proposition by declaring it with
annotated proof. An annotated proof is just like a regular Tutch proof, but each
line A is annotated with the term that justifies it M : A. Such an annotated proof
is essentially a typing derivation for the proof term at its conclusion. Here’s a
simple example showing that conjunction is commutative:

1

annotated proof andComm : A & B => B & A =

begin

[u : A & B;

snd u : B;

fst u : A;

(snd u, fst u) : B & A];

fn u => (snd u, fst u) : A & B => B & A

end;

Since a proof term determines the structure of the proof, Tutch also allows you
to give just the proof term, by declaring it with term:

term andComm : A & B => B & A =

fn u => (snd u, fst u);

For more examples, see Chapter 4 of the Tutch User’s Guide. The proof terms are
very similar to the ones given in lecture and are summarized in Section A.2.1 of
the Guide.

Task 1 (6 pts). Prove the theorem (A ∨ C) ∧ (B ⊃ C) ⊃ (A ⊃ B) ⊃ C using Tutch.
Give a proof, an annotated proof, and a proof term.

proof implOr : (A | C) & (B => C) => (A => B) => C

annotated proof implOr : (A | C) & (B => C) => (A => B) => C

term implOr : (A | C) & (B => C) => (A => B) => C

Task 2 (13 pts). Prove the following theorems using Tutch, and provide proof
terms.

proof curry : (A & B => C) => (A => B => C)

proof qcurry : ((?x:t. B(x)) => C) => (!x:t. B(x) => C)

term curry : (A & B => C) => (A => B => C)

term qcurry : ((?x:t. B(x)) => C) => (!x:t. B(x) => C)

proof compose : (!x:t. A(x) => B(x))

=> (!x:t. B(x) => C(x))

=> !x:t. A(x) => C(x)

term compose : (!x:t. A(x) => B(x))

=> (!x:t. B(x) => C(x))

=> !x:t. A(x) => C(x)

2

http://www.cs.cmu.edu/~fp/courses/15317-f09/software/tutch/doc/html/tutch_4.html#SEC18
http://www.cs.cmu.edu/~fp/courses/15317-f09/software/tutch/doc/html/tutch_ovr.html
http://www.cs.cmu.edu/~fp/courses/15317-f09/software/tutch/doc/html/tutch_9.html#SEC28

Task 3 (6 pts). Prove the following theorems using Tutch.

proof distribAllAnd

: (!x:t. A(x) & B(x)) <=> (!x:t. A(x)) & (!x:t. B(x))

proof distribExAnd1

: (?x:t. A(x) & B(x)) => (?x:t. A(x)) & (?x:t. B(x))

On Andrew machines, you can check your progress against the requirements
file /afs/andrew/course/15/317/req/hw02.req by running the command

$ /afs/andrew/course/15/317/bin/tutch -r hw02 <files...>

2 A Mixed-Up Quantifier (15 points)

In recitation, we saw that we could not prove (∀x:τ.A(x)) ⊃ ∃x:τ.A(x) true—our
universal quantifier permits the domain of quantification to be empty! We were
able to hack around this by proving a different proposition, but suppose we
wanted to directly define a universal quantifier Hx:τ.A(x) that did not permit
vacuous quantification. What would such a quantifier look like?

Its introduction rule HIa is similar to ∀Ia: we must prove A(a) for a new
parameter a : τ. However, to ensure the domain of quantification is non-empty,
we must also supply an element t : τ.

t : τ

a : τ
.
.
.

A(a) true

Hx:τ.A(x) true
HIa

Then we can give two elimination rules, one with an existential character and
one with a universal character.

Hx:τ.A(x) true

a : τ
.
.
.

C true

C true
HEa
∃

Hx:τ.A(x) true t : τ

A(t) true
HE∀

As usual, rules that introduce a parameter restrict its scope to the premise in
which it is introduced. In particular, in the elimination rule HEa

∃
, the parameter

a may not appear in the conclusion of the rule, C true.

Task 4 (2 pts). Show that this captures our intuition about what non-vacuous
universal quantification should mean by giving a deduction of (Hx:τ.A(x)) ⊃
∃x:τ.A(x) true.

3

Task 5 (4 pts). Are these elimination rules locally sound? If so, give a local
reduction for each elimination rule; if one does not exist, explain why.

Task 6 (4 pts). Are these elimination rules locally complete? If so, give a local
expansion for for an arbitrary deduction of Hx:τ.A(x); if one does not exist,
explain why.

Task 7 (5 pts). Make up a proof term for each of the rules, and express the local
reductions and local expansions you found above using proof terms.

4

	Tutch Proofs and Proof Terms (25 points)
	A Mixed-Up Quantifier (15 points)

