Midterm 2

15-317: Constructive Logic

November 6, 2008

Name:
Andrew ID:

Instructions

- This exam is closed-book, but one (two-sided) sheet of notes is permitted.
- You have 80 minutes to complete the exam.
- There are three problems and one extra-credit problem.
- The extra credit problem does NOT influence your score on the exam itself! It will be taken into account when determining final grades for the course. Do not work on the extra credit problem until you have finished the exam itself!

	Problem 1	Problem 2	Problem 3	Total	Extra Credit
Score					
Max	50	45	55	150	20
Grader					

1 Arithmetic (50 points)

Recall the rules for equality of natural numbers:

$$
\begin{gathered}
\frac{}{\mathrm{z}=\mathrm{z}}=I_{\mathrm{z}} \quad \frac{n=m}{\mathrm{~s} n=\mathrm{s} m}=I_{\mathrm{s}} \\
(\text { no elim rule for } \mathrm{z}=\mathrm{z}) \quad \\
\frac{\mathrm{s} n=\mathrm{s} m}{n=m}=E_{\mathrm{ss}} \quad \frac{\mathrm{~s} n=\mathrm{z}}{C}=E_{\mathrm{sz}} \quad \frac{\mathrm{z}=\mathrm{s} m}{C}=E_{\mathrm{zs}}
\end{gathered}
$$

Task 1 (15 pts). Give analogous rules for a proposition $n \leq m$ meaning n is less than or equal to m :

Task 2 (35 pts). Give a natural deduction derivation of the following proposition:

$$
\forall n: \text { nat. } \forall m \text { :nat. }(n \leq m) \supset \exists p: \text { nat. }(n+p)=m
$$

You may freely use computational equalities $0+k=k$ and $(\mathrm{s} i)+k=\mathrm{s}(i+k)$.

2 Logic Programming (45 points)

2.1 Reverse

Recall the append relation:

```
append([],Ys,Ys).
append([X|Xs],Ys,[X|Zs]) :-
    append(Xs,Ys,Zs).
```

Task 1 (20 pts). Use append to define a relation reverse (Xs,Ys) that relates a list Xs to a list Ys containing the same elements in the opposite order. For example, reverse ([1, 2, 3], [3, 2, 1]) should hold.

Your relation should have the following mode:
reverse (+Xs, -Ys)
That is, the first argument is an input and the second argument is an output.
Fill in the holes in the following code:
reverse([], _).
reverse([X|Xs], \quad) :-

2.2 Mode

Task 2 (4 pts). What mode does append need to have to for reverse to have mode reverse ($+\mathrm{Xs},-\mathrm{Ys}$) ?

Task 3 (6 pts). Explain why append has this mode, and why your code for reverse has mode (+Xs, -Ys).

2.3 Termination

Task 4 (7 pts). Does the following Prolog program terminate on all inputs with mode a $(+\mathrm{N} 1,+\mathrm{N} 2)$?
$a(N, s(M)):-a(N, M)$.
$a(s(N), M):-a(N, s(s(M)))$.
If so, state the termination order: what gets smaller at each call?
If not, find an input on which proof search fails to terminate, trace the sequence of subgoals considered, and explain why this loops.

Task 5 (8 pts). Does the following Prolog program terminate on all inputs with mode $\mathrm{b}(+\mathrm{N} 1,+\mathrm{N} 2)$?
b(N,s(M)) :-b(s(N),M).
b(s(N),M) :- b(N,s(s(M))).
If so, state the termination order: what gets smaller at each call?
If not, find an input on which proof search fails to terminate, trace the sequence of subgoals considered, and explain why this loops.

3 Sequent Calculus

In this problem, we will consider a sequent calculus with rules for negation.
We consider two forms of sequent: $A_{1} \ldots A_{n} \Longrightarrow A$ (as usual) and $A_{1} \ldots A_{n} \Longrightarrow \#$ (if A_{1}, \ldots, A_{n} are true, then contradiction). We write J for an arbitrary conclusion (A or \#).

The rules for negation are as follows:

$$
\frac{\Gamma, A \Longrightarrow \#}{\Gamma \Longrightarrow \neg A} \neg R \quad \frac{\Gamma, \neg A \Longrightarrow A}{\Gamma, \neg A \Longrightarrow J} \neg L
$$

3.1 Identity

Identity: For all A and Γ, the sequent $\Gamma, A \Longrightarrow A$ is derivable.

Task 1 (20 pts). Prove the $\neg A$ case:
Assume $\Gamma, A \Longrightarrow A$ for all Γ
and show $\Gamma, \neg A \Longrightarrow \neg A$ for all Γ.

3.2 Cut

$$
\text { Cut: If } \Gamma \Longrightarrow A \text { and } \Gamma, A \Longrightarrow J \text { then } \Gamma \Longrightarrow J .
$$

Task 2 (20 pts). Prove the principal cut case for $\neg A$: Assume

$$
\begin{aligned}
& \mathcal{D}_{1} \\
& \mathcal{D}=\frac{\Gamma, A \Longrightarrow \#}{\Gamma \Longrightarrow \neg A} \neg R \quad \text { and } \quad \mathcal{E}=\frac{\Gamma, \neg A \Longrightarrow A}{\Gamma, \neg A \Longrightarrow J} \neg L \\
& \mathcal{F} \\
& \text { and show } \quad \Gamma \Longrightarrow J \text {. }
\end{aligned}
$$

- Clearly state what gets smaller at each use of the induction hypothesis.
- You may use the following weakening principles:
- Left Weakening: If $\Gamma \Longrightarrow J$ then $\Gamma, A \Longrightarrow J$.
- Right Weakening: If $\Gamma \Longrightarrow \#$ then $\Gamma \Longrightarrow C$.

3.3 Admissible Rules

Task 3 (5 pts). Show that the rule of contraction, which states that assumptions may be duplicated (when reading a proof from bottom to top), is admissible. Prove the following:

$$
\text { If } \Gamma, A, A \Longrightarrow J \text { then } \Gamma, A \Longrightarrow J
$$

You may use weakening, identity, and cut in your proof.

Recall that a rule is called invertible if the conclusion implies the premises.
Task 4 (5 pts). Is the rule $\neg R$ invertible?
If so, show that the conclusion implies the premise (you may use identity and cut and weakening to prove this).

If not, find a particular Γ and A for which the conclusion is true but the premise is not.

Task 5 (5 pts). Is the rule $\neg L$ invertible?
If so, show that the conclusion implies the premise (you may use identity and cut and weakening to prove this).

If not, find a particular Γ and A for which the conclusion is true but the premise is not.

4 EXTRA CREDIT: Inversion

Recall the sequent calculus rules:

$$
\begin{array}{cc}
\frac{P \in \Gamma}{\Gamma \Longrightarrow P} \text { init } \\
\frac{\Gamma \Longrightarrow A \angle \Longrightarrow B}{\Gamma \Longrightarrow A \wedge B} \wedge R & \frac{\Gamma, A \wedge B, A, B \Longrightarrow C}{\Gamma, A \wedge B \Longrightarrow C} \wedge L \\
\frac{\Gamma \Longrightarrow A}{\Gamma \Longrightarrow A \vee B} \vee R_{1} \frac{\Gamma \Longrightarrow B}{\Gamma \Longrightarrow A \vee B} \vee R_{2} & \frac{\Gamma, A \vee B, A \Longrightarrow C \quad \Gamma, A \vee B, B \Longrightarrow C}{\Gamma, A \vee B \Longrightarrow C} \vee L \\
\frac{\Gamma, A \Longrightarrow B}{\Gamma \Longrightarrow A \supset B} \supset R & \frac{\Gamma, A \supset B \Longrightarrow A \quad \Gamma, A \supset B, B \Longrightarrow C}{\Gamma, A \supset B \Longrightarrow C}
\end{array}
$$

Consider the following sequent:

$$
[] \Longrightarrow((P \wedge Q) \vee(P \wedge R)) \supset(P \wedge(Q \vee R))
$$

Task 1 (10 pts). How many proofs of this sequent are there? If there are finitely many, count them. If there are infinitely many, explain why.

The following rules describe the left-inversion strategy that you implemented in Homework 7. The context Γ can contains only atoms P and implications $A \supset B$.

$$
\text { Rules for } \Gamma \Longrightarrow A
$$

$$
\begin{gathered}
\frac{P \in \Gamma}{\Gamma \Longrightarrow P} \text { init } \quad \frac{\Gamma \Longrightarrow A \Gamma \Longrightarrow B}{\Gamma \Longrightarrow A \wedge B} \wedge R \quad \frac{\Gamma \Longrightarrow A}{\Gamma \Longrightarrow A \vee B} \vee R_{1} \quad \frac{\Gamma \Longrightarrow B}{\Gamma \Longrightarrow A \vee B} \vee R_{2} \\
\frac{\Gamma ; A \Longrightarrow B}{\Gamma \Longrightarrow A \supset B} \supset R \quad \frac{\Gamma, A \supset B \Longrightarrow A \quad \Gamma, A \supset B ; B \Longrightarrow C}{\Gamma, A \supset B \Longrightarrow C} \supset L
\end{gathered}
$$

Rules for inversion $\Gamma ; \Delta \Longrightarrow A$

$$
\begin{aligned}
& \quad \frac{\Gamma ; A, B, \Delta \Longrightarrow C}{\Gamma ; A \wedge B, \Delta \Longrightarrow C} \wedge L_{i n v} \quad \frac{\Gamma ; A, \Delta \Longrightarrow C \quad \Gamma ; B, \Delta \Longrightarrow C}{\Gamma ; \Delta, A \vee B \Longrightarrow C} \vee L_{i n v} \\
& \frac{\Gamma, P ; \Delta \Longrightarrow C}{\Gamma ; P, \Delta \Longrightarrow C} P L_{i n v} \quad \frac{\Gamma, A \supset B ; \Delta \Longrightarrow C}{\Gamma ; A \supset B, \Delta \Longrightarrow C} \supset L_{i n v} \quad \frac{\Gamma \Longrightarrow C}{\Gamma ;[] \Longrightarrow C}[] L_{i n v}
\end{aligned}
$$

Task 2 (10 pts). How many proofs of

$$
[] \Longrightarrow((P \wedge Q) \vee(P \wedge R)) \supset(P \wedge(Q \vee R))
$$

are there?
If there are finitely many, show all proofs. If there are infinitely many, explain why.

