Midterm 2

15-317: Constructive Logic

November 6, 2008

Name:

Andrew ID:

Instructions

- This exam is closed-book, but one (two-sided) sheet of notes is permitted.
- You have 80 minutes to complete the exam.
- There are three problems and one extra-credit problem.
- The extra credit problem does **NOT** influence your score on the exam itself! It will be taken into account when determining final grades for the course. *Do not work on the extra credit problem until you have finished the exam itself*!

	Problem 1	Problem 2	Problem 3	Total	Extra Credit
Score					
Max	50	45	55	150	20
Grader					

1 Arithmetic (50 points)

Recall the rules for equality of natural numbers:

$$\frac{1}{\mathsf{z}=\mathsf{z}}=I_{\mathsf{z}}\qquad\frac{n=m}{\mathsf{s}\,n=\mathsf{s}\,m}=I_{\mathsf{s}}$$

(no elim rule for
$$z = z$$
) $\frac{s n = s m}{n = m} = E_{ss}$ $\frac{s n = z}{C} = E_{sz}$ $\frac{z = s m}{C} = E_{zs}$

Task 1 (15 pts). Give analogous rules for a proposition $n \le m$ meaning n is less than or equal to m:

Task 2 (35 pts). Give a natural deduction derivation of the following proposition:

 $\forall n \texttt{:nat.} \forall m \texttt{:nat.} \ (n \leq m) \ \supset \ \exists p \texttt{:nat.} \ (n+p) = m$

You may freely use computational equalities 0 + k = k and (s i) + k = s (i + k).

2 Logic Programming (45 points)

2.1 Reverse

Recall the append relation:

```
append([],Ys,Ys).
append([X|Xs],Ys,[X|Zs]) :-
append(Xs,Ys,Zs).
```

Task 1 (20 pts). Use append to define a relation reverse(Xs, Ys) that relates a list Xs to a list Ys containing the same elements in the opposite order. For example, reverse([1,2,3], [3,2,1]) should hold.

Your relation should have the following mode:

reverse(+Xs,-Ys)

That is, the first argument is an input and the second argument is an output. Fill in the holes in the following code:

reverse([], _____).

reverse([X|Xs], _____) :-

2.2 Mode

Task 2 (4 pts). What mode does append need to have to for reverse to have mode reverse (+Xs,-Ys)?

Task 3 (6 pts). Explain why append has this mode, and why your code for reverse has mode (+Xs, -Ys).

2.3 Termination

Task 4 (7 pts). Does the following Prolog program terminate on all inputs with mode a (+N1, +N2)?

a(N,s(M)) :- a(N,M). a(s(N),M) :- a(N,s(s(M))).

If so, state the termination order: what gets smaller at each call?

If not, find an input on which proof search fails to terminate, trace the sequence of subgoals considered, and explain why this loops.

Task 5 (8 pts). Does the following Prolog program terminate on all inputs with mode b(+N1,+N2)?

b(N,s(M)) := b(s(N),M).b(s(N),M) := b(N,s(s(M))).

If so, state the termination order: what gets smaller at each call?

If not, find an input on which proof search fails to terminate, trace the sequence of subgoals considered, and explain why this loops.

3 Sequent Calculus

In this problem, we will consider a sequent calculus with rules for negation.

We consider two forms of sequent: $A_1...A_n \Longrightarrow A$ (as usual) and $A_1...A_n \Longrightarrow \#$ (if $A_1,...,A_n$ are true, then contradiction). We write J for an arbitrary conclusion (A or #).

The rules for negation are as follows:

$$\frac{\Gamma, A \Longrightarrow \#}{\Gamma \Longrightarrow \neg A} \neg R \qquad \frac{\Gamma, \neg A \Longrightarrow A}{\Gamma, \neg A \Longrightarrow J} \neg L$$

3.1 Identity

Identity: For all A and Γ , the sequent Γ , $A \Longrightarrow A$ is derivable.

Task 1 (20 pts). Prove the $\neg A$ case:

Assume $\Gamma, A \Longrightarrow A$ for all Γ and show $\Gamma, \neg A \Longrightarrow \neg A$ for all Γ .

3.2 Cut

Cut: If
$$\Gamma \Longrightarrow A$$
 and $\Gamma, A \Longrightarrow J$ then $\Gamma \Longrightarrow J$.

Task 2 (20 pts). Prove the principal cut case for $\neg A$: Assume

$$\mathcal{D} = \begin{array}{cc} \mathcal{D}_1 & & \mathcal{E}_1 \\ \Gamma, A \Longrightarrow \# \\ \Gamma \Longrightarrow \neg A \end{array} \quad \text{and} \quad \mathcal{E} = \begin{array}{cc} \mathcal{L} \\ \Gamma, \neg A \Longrightarrow A \\ \Gamma, \neg A \Longrightarrow J \end{array} \neg L$$

and show $\Gamma \Longrightarrow J.$

- Clearly state what gets smaller at each use of the induction hypothesis.
- You may use the following weakening principles:
 - Left Weakening: If $\Gamma \Longrightarrow J$ then $\Gamma, A \Longrightarrow J$.
 - **Right Weakening:** If $\Gamma \Longrightarrow \#$ then $\Gamma \Longrightarrow C$.

3.3 Admissible Rules

Task 3 (5 pts). Show that the rule of *contraction*, which states that assumptions may be duplicated (when reading a proof from bottom to top), is admissible. Prove the following:

If
$$\Gamma, A, A \Longrightarrow J$$
 then $\Gamma, A \Longrightarrow J$.

You may use weakening, identity, and cut in your proof.

Recall that a rule is called *invertible* if the conclusion implies the premises.

Task 4 (5 pts). Is the rule $\neg R$ invertible?

If so, show that the conclusion implies the premise (you may use identity and cut and weakening to prove this).

If not, find a particular Γ and A for which the conclusion is true but the premise is not.

Task 5 (5 pts). Is the rule $\neg L$ invertible?

If so, show that the conclusion implies the premise (you may use identity and cut and weakening to prove this).

If not, find a particular Γ and A for which the conclusion is true but the premise is not.

4 EXTRA CREDIT: Inversion

Recall the sequent calculus rules:

$$\frac{P \in \Gamma}{\Gamma \Longrightarrow P} init$$

$$\frac{\Gamma \Longrightarrow A \quad \Gamma \Longrightarrow B}{\Gamma \Longrightarrow A \land B} \land R \qquad \qquad \frac{\Gamma, A \land B, A, B \Longrightarrow C}{\Gamma, A \land B \Longrightarrow C} \land L$$

$$\frac{\Gamma \Longrightarrow A}{\Gamma \Longrightarrow A \lor B} \lor R_1 \quad \frac{\Gamma \Longrightarrow B}{\Gamma \Longrightarrow A \lor B} \lor R_2 \quad \frac{\Gamma, A \lor B, A \Longrightarrow C \quad \Gamma, A \lor B, B \Longrightarrow C}{\Gamma, A \lor B \Longrightarrow C} \lor L$$

$$\frac{\Gamma, A \Longrightarrow B}{\Gamma \Longrightarrow A \supset B} \supset R \qquad \qquad \frac{\Gamma, A \supset B \Longrightarrow A \quad \Gamma, A \supset B, B \Longrightarrow C}{\Gamma, A \supset B \Longrightarrow C} \supset L$$

Consider the following sequent:

$$[] \Longrightarrow ((P \land Q) \lor (P \land R)) \supset (P \land (Q \lor R))$$

Task 1 (10 pts). How many proofs of this sequent are there? If there are finitely many, count them. If there are infinitely many, explain why.

The following rules describe the left-inversion strategy that you implemented in Homework 7. The context Γ can contains only atoms P and implications $A \supset B$.

Rules for
$$\Gamma \Longrightarrow A$$

$$\frac{P \in \Gamma}{\Gamma \Longrightarrow P} init \qquad \frac{\Gamma \Longrightarrow A \quad \Gamma \Longrightarrow B}{\Gamma \Longrightarrow A \land B} \land R \qquad \frac{\Gamma \Longrightarrow A}{\Gamma \Longrightarrow A \lor B} \lor R_1 \qquad \frac{\Gamma \Longrightarrow B}{\Gamma \Longrightarrow A \lor B} \lor R_2$$

$$\frac{\Gamma; A \Longrightarrow B}{\Gamma \Longrightarrow A \supset B} \supset R \qquad \frac{\Gamma, A \supset B \Longrightarrow A \quad \Gamma, A \supset B; B \Longrightarrow C}{\Gamma, A \supset B \Longrightarrow C} \supset L$$

Rules for inversion $\Gamma; \Delta \Longrightarrow A$

$$\frac{\Gamma; A, B, \Delta \Longrightarrow C}{\Gamma; A \land B, \Delta \Longrightarrow C} \land L_{inv} \qquad \frac{\Gamma; A, \Delta \Longrightarrow C \quad \Gamma; B, \Delta \Longrightarrow C}{\Gamma; \Delta, A \lor B \Longrightarrow C} \lor L_{inv}$$

$$\frac{\Gamma, P; \Delta \Longrightarrow C}{\Gamma; P, \Delta \Longrightarrow C} \ PL_{inv} \qquad \frac{\Gamma, A \supset B; \Delta \Longrightarrow C}{\Gamma; A \supset B, \Delta \Longrightarrow C} \supset L_{inv} \qquad \frac{\Gamma \Longrightarrow C}{\Gamma; [] \Longrightarrow C} \ [\]L_{inv}$$

Task 2 (10 pts). How many proofs of

$$[] \Longrightarrow ((P \land Q) \lor (P \land R)) \supset (P \land (Q \lor R))$$

are there?

If there are finitely many, show all proofs. If there are infinitely many, explain why.