# Midterm 1 

## 15-317: Constructive Logic

October 2, 2008

Name:
Andrew ID:

## Instructions

- This exam is closed-book, but one (two-sided) sheet of notes is permitted.
- There are five problems. You have 80 minutes to complete the exam.

|  | Problem 1 | Problem 2 | Problem 3 | Problem 4 | Problem 5 | Total |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Score |  |  |  |  |  |  |
| Max | 25 | 45 | 15 | 25 | 40 | 150 |
| Grader |  |  |  |  |  |  |

## 1 Parsing ( 25 points)

Here's a variation on the Clue problem:
If Mr. Green committed the murder, then it was with the candle-stick in the billiard room or with the revolver in the hall. If it wasn't in the billiard room, then Miss Scarlet did it. Either it was done with the revolver, or in the hall. There was a murderer, and there was a murder weapon, and it happened somewhere. There was only one murderer.

Write out the statements above in the language of first-order logic, using the following notation:

## Objects:

$$
\begin{aligned}
\text { green } & =\text { Mr. Green } \\
\text { scarlet } & =\text { Mrs. Scarlet } \\
\text { billiard } & =\text { the billiard room } \\
\text { hall } & =\text { the hallway } \\
\text { revolver } & =\text { the revolver } \\
\text { candle } & =\text { the candle-stick }
\end{aligned}
$$

## Atomic Propositions:

$$
\begin{aligned}
\operatorname{did}(x) & =\text { the murderer was } \mathrm{x} \\
\text { with }(x) & =\text { the murder weapon was } \mathrm{x} \\
\operatorname{in}(x) & =\text { the murder weapon was committed in } \mathrm{x} \\
\operatorname{same}(x, y) & =\mathrm{x} \text { and } \mathrm{y} \text { are the same person }
\end{aligned}
$$

(question continues on the next page)

Task 1 (5 pts).
If Mr. Green committed the murder, then it was with the candle-stick in the billiard room or with the revolver in the hall.

Task 2 (5 pts).
If it wasn't in the billiard room, then Miss Scarlet did it.

## Task 3 (5 pts).

Either it was done with the revolver, or in the hall.

## Task 4 (5 pts).

There was a murderer, and there was a murder weapon, and it happened somewhere.

Task 5 (5 pts).
There was only one murderer.

## 2 Natural Deduction and Proof Terms (45 points)

### 2.1 Natural Deduction

Consider the following proposition:

$$
(A \supset B \supset C) \supset(A \supset B) \supset(A \supset C)
$$

Here is a Tutch proof:

```
proof scomb : (A => B => C) => (A => B) => (A => C) =
begin
[(A => B => C);
    [A => B;
        [A;
            B => C;
            B;
            C];
            A => C];
    (A => B) => (A => C)];
(A => B => C) => (A => B) => (A => C);
end;
```

Task 1 ( 20 pts ). Give the natural deduction proof corresponding to this Tutch proof. Label each inference rule used with the rule name and any variables discharged (e.g., $\supset I^{u}$ ).

### 2.2 Proof Terms

Say you have 2 rows with 2 pigeonholes in each row:

| $H_{1}$ | $H_{2}$ |
| :--- | :--- |
| $H_{3}$ | $H_{4}$ |

Then the pigeonhole principle says that if there are at least three pigeons in holes, then at least one row has both holes filled. For example, the pigeons might be arranged like this:


We can formalize this as follows:

- Consider atomic propositions $H_{1}, H_{2}, H_{3}, H_{4}$, where $H_{i}$ means "there is a pigeon in hole $i$ ".
- We can state "there are at least three pigeons in holes" by enumerating the four configurations in which this is true:

$$
\left(H_{1} \wedge H_{2} \wedge H_{3}\right) \vee\left(H_{1} \wedge H_{2} \wedge H_{4}\right) \vee\left(H_{1} \wedge H_{3} \wedge H_{4}\right) \vee\left(H_{2} \wedge H_{3} \wedge H_{4}\right)
$$

- We can state "at least one row has both holes filled" by enumerating the two ways this can be true:

$$
\left(H_{1} \wedge H_{2}\right) \vee\left(H_{3} \wedge H_{4}\right)
$$

(Question continues on the next page)

Task 1 ( 25 pts ). Give a proof term for the pigeonhole principle:

$$
\begin{aligned}
& \left(H_{1} \wedge H_{2} \wedge H_{3}\right) \vee\left(H_{1} \wedge H_{2} \wedge H_{4}\right) \vee\left(H_{1} \wedge H_{3} \wedge H_{4}\right) \vee\left(H_{2} \wedge H_{3} \wedge H_{4}\right) \\
& \supset \\
& \left(H_{1} \wedge H_{2}\right) \vee\left(H_{3} \wedge H_{4}\right)
\end{aligned}
$$

Note that conjunction and disjunction associate to the right, so $A \wedge B \wedge C$ is shorthand for $A \wedge(B \wedge C)$.
For reference, there is a Tutch proof on the next page (but feel free to ignore this proof-it is not required that your proof term correspond to it).

```
proof pidg : ((H1 & (H2 & H3))
                        | ((H1 & H2 & H4)
                        | ((H1 & H3 & H4)
                                | (H2 & H3 & H4))))
                        => ((H1 & H2) (H3 & H4)) =
begin
[(H1 & H2 & H3) | (H1 & H2 & H4) | (H1 & H3 & H4) (H2 & H3 & H4);
    [(H1 & H2 & H3);
        H1;
        H2 & H3;
        H2;
        H1 & H2;
        (H1 & H2) | (H3 & H4)];
    [(H1 & H2 & H4) ((H1 & H3 & H4) (H2 & H3 & H4));
        [(H1 & H2 & H4);
            H1;
            H2 & H4;
            H2;
            H1 & H2;
            (H1 & H2) (H3 & H4)];
        [(H1 & H3 & H4) (H2 & H3 & H4);
            [H1 & H3 & H4;
                H3 & H4;
                ((H1 & H2) (H3 & H4))];
                [H2 & H3 & H4;
                    H3 & H4;
                    (H1 & H2) | (H3 & H4)];
                (H1 & H2) | (H3 & H4)];
        (H1 & H2) | (H3 & H4)];
        (H1 & H2) (H3 & H4)];
(H1 & H2 & H3) | (H1 & H2 & H4) | (H1 & H3 & H4) (H2 & H3 & H4)
        => ((H1 & H2) (H3 & H4));
end;
```


## 3 Quantifiers ( 15 points)

Consider the following proof:

$$
\begin{aligned}
& \frac{\overline{B(x) \supset C(x)} w_{2} \frac{\overline{A(x) \supset B(x)} w_{1} \quad \overline{A(x)}}{B(x)} \supset E}{\frac{C(x)}{w_{3}}} \supset E
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\overline{(\exists x: \tau . B(x) \supset C(x)) \supset(\exists x: \tau . A(x) \supset C(x))} \supset I^{v}}{(\exists x: \tau . A(x) \supset B(x)) \supset(\exists x: \tau \cdot B(x) \supset C(x)) \supset(\exists x: \tau \cdot A(x) \supset C(x))} \supset I^{u}
\end{aligned}
$$

Task 1 ( 15 pts ). This proof is incorrect. Circle the labels of the rule(s) whose applications are incorrect. Explain what is incorrect about each of these rule applications.

## 4 Proof Irrelevance (25 points)

Suppose we have

- Types nat and list
- An atomic proposition append $\left(l_{1}, l_{2}, l_{3}\right)$ meaning that appending the lists $l_{1}$ and $l_{2}$ gives the list $l_{3}$.
- An atomic proposition length $(l, n)$ meaning that the length of $l$ is $n$.
- An atomic proposition $n>m$ meaning that the length of $n$ is greater than $m$.

A function partitioning a list can be specified as follows:
$\forall l$ : list. $\forall n$ : nat. $(\exists m$ : nat.length $(l, m) \wedge(n>m)) \vee\left(\exists l_{1}:\right.$ list. $\exists l_{2}$ : list.append $\left(l_{1}, l_{2}, l\right) \wedge$ length $\left.\left(l_{1}, n\right)\right)$

Task 1 ( 7 pts). Add proof-irrelevance brackets to this proposition in the correct places to give the following computational contents:

When given a list $l$ and a number $n$, return $\operatorname{inr}\left(l_{1}, l_{2},[]\right)$ when $n$ is less than or equal to the length of the list, and $\operatorname{inl}[]$ when $n$ is greater than the length of the list.

Task 2 ( 7 pts). Add proof-irrelevance brackets to this proposition in the correct places to give the following computational contents:

When given a list $l$ and a number $n$, return inr of a list containing the first $n$ elements of $l$ when $n$ is less than or equal to the length of the list, or inl[] otherwise.

Task 2 ( 11 pts). Explain the computational contents of the following proposition:

$$
\forall l: \text { list. } \forall n \text { : nat. } \quad[\exists m: \text { nat.length }(l, m) \wedge(n>m)]
$$

v
$\left[\exists l_{1}:\right.$ list. $\exists l_{2}:$ list.append $\left.\left(l_{1}, l_{2}, l\right) \wedge \operatorname{length}\left(l_{1}, n\right)\right]$

## 5 Decidability (40 points)

Recall the rules for constructive logic with the judgements $A$ false and \#:


We can define a connective $\Delta A$ meaning that $A$ is decidable:

$$
\begin{array}{ccccc} 
& & \overline{A \text { true }}^{u} & \overline{A \text { false }} k \\
& & \vdots & \vdots \\
\frac{A \text { true }}{\Delta A \text { true }} \Delta I_{L} & \frac{A \text { false }}{\Delta A \text { true }} \Delta I_{R} & \Delta A \text { true } & \vdots & J \\
& J & \\
& & \\
& & \\
u, k
\end{array}
$$

Task 1 (15 pts). Prove that $\Delta A$ is locally sound:

Task 2 (10 pts). Prove that $\Delta A$ is locally complete:

Task 3 (15 pts). For this task, we will work in classical logic, which means you may also use the following rule:


Give a natural deduction derivation of $\Delta A$ for an arbitrary $A$ :

