
Final Exam

15-317: Constructive Logic

December 9, 2008

Name: Andrew ID:

Instructions

• This exam is open-book.

• You have 3 hours to complete the exam.

• There are8 problems.

Prob 1 Prob 2 Prob 3 Prob 4 Prob 5 Prob 6 Prob 7 Prob 8 Total

Score

Max 60 40 45 45 40 40 20 10 300

Grader

1

1 Quantifiers

Recall the proof terms for quantifiers:

x:τ
...

M : A
λx.M : ∀x:τ.A

∀Ix M : ∀x:τ.A t : τ
Mt : A[t/x]

∀E
t : τ M : A[t/x]

(t, M) : ∃x:τ.A
∃I

M : ∃x:τ.A

x:τ , u:A
...

N : C
let (x, u) = M in N : C

∃Ex,u

Task 1 (15 pts). Give anatural deduction proof tree for the following entailment. Note thatx does not
occur inB. Be sure to label each inference rule.

∀x:τ.(A(x) ⊃ B)
u

(∃y:τ.A(y)) ⊃ B

Task 2 (15 pts). Give aproof term for the following entailment. Note thatx does not occur inB.

f : (∃x:τ.A(x)) ⊃ B `??? : ∀y:τ.(A(y) ⊃ B)

2

Task 3 (15 pts). Give anatural deduction proof tree for the following entailment. Note thatx does not
occur inB. Be sure to label each inference rule.

∃x:τ.(A(x) ∨ B)
u

(∃y:τ.A(y)) ∨ B

Task 4 (15 pts). Give aproof term for the following entailment. Note thatx does not occur inB.

s : (∃x:τ.A(x)) ∧ B `??? : ∃y:τ.(A(y) ∧ B)

3

2 Induction

Sometimes we have written recursive functions using a pattern-matchingrecursion schema. Fornat, the
recursion schema is the following:

f z = M0
f (s n) = M1(n, f(n))

Using the schema, we can write

double : nat -> nat
double z = z
double (s n) = s (s (double n))

for the proof term

fn x:nat => natrec(x, z, n.r. s(s(r)))

where the variabler stands for the recursive call.
Consider the following intro and elim rules for lists of natural numbers, annotated with proof-terms

[] : list

n : nat l : list

(n :: l) : list

l : list M1 : J([])

x : nat , xs : list , J(xs)
u

...
M2 : J(x :: xs)

listrec(l, M1, x.xs.u.M2) : J(l)

Task 1 (15 pts). Give a primitive recursion schema for list induction, analogous tothe above schema for
nat:

4

Consider the following proof-terms which has typelist → nat → list:

λx:list.listrec(x, λa:nat.[], x:nat.xs:list.r:nat → list.λa:nat.(x + a) :: (r(x + a)))

Task 2 (10 pts). Translate this proof-term to a pattern-matching function definition using your recursion
schema.

5

listrec has the following local reductions:

listrec([], M1, x.xs.u.M2) ⇒R M1

listrec(n :: l, M1, x.xs.u.M2) ⇒R [n/x][l/xs][listrec(l, M1, x.xs.u.M2)/u]M2

Task 3 (15 pts). Compute the list that

s (1 :: (2 :: (3 :: []))) 0

reduces to (you need to show only the final result, not each intermediate step) and explain what this function
does.

6

3 Prolog

In this problem, we will consider some Prolog code for matching a stringS against a regular expressionR.
We consider the following regular expressions:

• The empty string[] matches the empty regular expressionepsilon.

• The singleton string[c] matches the singleton regexpsingle(c).

• The stringSmatches the regexpconcat(R1,R2) (usually writtenR1R2) if S splits asS1 followed
by S2, whereS1 matchesR1 andS2 matchesS2.

• The stringS matches the regexpstar(R) (usually writtenR∗) if S = [] or it splits asS1 followed
by S2, whereS1 matchesR andS2 matchesstar(R).

Disjunctive regular expressions(R1 | R2) can be explained similarly, but we elide them for brevity.
Consider the following Prolog code for regular expression matching:

1 append ([] , Ys , Ys) .
2 append ([X|Xs] , Ys , [X | Zs]) :−
3 append (Xs , Ys , Zs) .
4
5
6 match ([] , e p s i l o n) .
7
8 match ([C] , s i n g l e (C)) .
9

10 match (S ,concat(R1 , R2)) :−
11 append (S1 , S2 , S) ,
12 match (S1 , R1) ,
13 match (S2 , R2) .
14
15 match ([] , s t a r (R)) .
16 match (S , s t a r (R)) :−
17 append (S1 , S2 , S) ,
18 match (S1 , R) ,
19 match (S2 , s t a r (R)) .

7

Task 1 (10 pts). We will considermatch(S,R) with mode+ +: both the string and the regular expression
are inputs.

What mode doesappend need to have formatch to have this mode?

Task 2 (20 pts). There are some groundS andR such thatmatch(S,R) fails to terminate.
For each of the following termination metrics, identify a rule that violates that termination order and

explain which subgoal violates it:

1. The regular expressionR gets smaller.

The subgoal on line_______ violates this termination order because

2. The stringS gets smaller.

The subgoal on line_______ violates this termination order because

8

3. The stringS gets smaller, or it stays the same and the regexpR gets smaller.

The subgoal on line_______ violates this termination order because

4. The regular expressionR gets smaller, or it stays the same and the stringS gets smaller.

The subgoal on line_______ violates this termination order because

Task 3 (5 pts). Give a specific stringS and regexpR for whichmatch(S,R) fails to terminate. (Hint: your
non-terminating input may be a query on whichmatch should fail, but instead loops.)

9

Task 4 (10 pts). It is possible to make the above code terminate on well-moded calls by adding one extra
subgoal to one rule. Viewed as inference rules, this revised code should define the same relation as the
original code; but the revised code will terminate under Prolog’s depth-first proof strategy.

Show the revised rule, and explain why it satisfies one of the above termination orders. Hint: you may
use term equalityM = N or disequalityM 6= N .

10

4 IRIS

In this problem, we will consider a different implementation of regular expression matching, using the
saturating logic programming language IRIS.

We represent the characters in the string using relationat identifying the character at each position
(recall the edit distance problem in Homework 9, and the CKY parsing example presented in lecture). For
example, the stringatcg is represented by

at(0,a).
at(1,t).
at(2,c).
at(3,g).

We will represent regular expression matching with a relation
match(?s,?e,?r)
meaning that the portion of the input string from?s (inclusive!) to?e (exclusive!) matches the regular

expression?r. In the above example, we will have

match(0,1,single(a))
match(0,0,epsilon)

because the?s character is included in the match but?e character is not.

11

Task 1 (25 pts). Give IRIS rules for regular expression matching. Do not yetworry about saturation (see
the next question).

// match(?s,?e,?r)

// EXAMPLE: rules for epsilon:
// There is an epsilon at the beginning of the string and after each character.
match(0,0,epsilon).
match(?s1,?s1,epsilon) :- at(?s,?c), ?s + 1 = ?s1.

// TODO rule for single(?c)

// TODO rule for concat(?r1,?r2)

// TODO three rules for star(?r)

12

Unless you already thought of this, your IRIS code will not saturate, because it will attempt to saturate
the database withall regular expressions matching a string (and there may be infinitely many).

We need to restrict attention to those regular expressions that are subexpressions of the input (recall the
model checking problem in Homework 9).

Task 2 (10 pts). Assume the database is seeded with the factsubexp(r0) for the input regular expression
r0 that we are interested in. Give rules forsubexp so thatsubexp(R) holds iff R is a subexpression of
the initial expressionr0.

Task 3 (10 pts). Addsubexp subgoals to your rules on the previous page so that the matching algo-
rithm only considers subformulas of the input. The revised code should satisfy the following invariant: if
match(?s,?e,?r) thensubexp(?r). Avoid redundantsubexp subgoals—check it only where it is
necessary.

13

5 Linear Logic

For each of the following linear logic entailments, circleDerivable or Not Derivable and:

• If the entailment isDerivable: give a sequent calculus derivation

• If the entailment isNot Derivable: explain why no derivation exists (i.e., attempt a derivation and
explain why you must get stuck)

Clearly label each inference rule.

Task 1 (14 pts).
Derivable / Not Derivable

(A ⊗ B) (C ° A ((B (C)

14

Task 3 (13 pts).
Derivable / Not Derivable

(A (B)&(A (C) ° A ((B&C)

Task 3 (13 pts).
Derivable / Not Derivable

(A (B) ⊗ (A (C) ° A ((B ⊗ C)

15

6 Linear logic programming

In the game Sokoban, a player must move a collection of boxes to certain specified goal positions. An
example level looks like this:

The player can move in four directions (north, south, east, west) on a grid. Aside from the player’s
current location, each space on the grid is either unoccupied, or it contains a box, or it contains a wall. The
player can freely move to any unoccupied space. The player can move boxes only by pushing them to an
open square; he cannot pull them. (For example: A block with walls to the north and to the east cannot be
moved.)

We will write a linear logic program to solve Sokoban puzzles.
We’ll represent the board as a collection of cells with the following predicates:

• !east(C1,C2) The cell to theeast of cellC1 is the cellC2. Similarly for!south(C1,C2).
The board layout does not change over time.

• player(C) The player is at cellC.

• box(C) There is a box at cellC.

• clear(C) Cell C is clear.

Walls are not specified explicitly—they are just the cells that are neither player nor box nor clear.
In this problem, you will give rules for two actions; the remaining rules are analogous. You can write

your answer using either the rule notation we used in lecture, with inferencerules that consume their
premises (except the! premises):

premise1,
!premise2,
...

conclusion1,
conclusion2,
...

or in linear logic notation, as you did in Homework 10.

16

Task 1 (15 pts). Give a rule for the following action:

Move East: If the player is at a cell, and the cell to the east is clear, then the player can move to that cell.

Task 2 (15 pts). Give a rule for the following action:

Push East: If the player is at a cell, and the cell to the east has a box, and the cell to the east of that is clear,
then the player and the block can each move one cell to the east.

17

Task 3 (10 pts). Give a linear logic proposition whose proofs are solutions to the following Sokoban prob-
lem. You may assume that the layout of the board (east, south) is already in the database.

• Initial state: The player is at cellC1, a box is at cellC2, and the cellsC3, C4, C5 are clear.

• Final state: The box is at cellC4, and the player can be anywhere.

18

7 Lax Logic

Recall the proof terms for lax logic, which correspond to effectful computation:

E ÷ A lax

{E} : {A} true
{}I M : A true

M ÷ A lax

M : {A} true

x : A true
...

E ÷ C lax

(let {x} = M in E) ÷ C lax
{}E

We’ll add a term

flip ÷ (> ∨>) lax

which non-deterministically returnstrue (represented asinl〈〉) with some probability and otherwise re-
turnsfalse (represented asinr〈〉).

Task 1 (20 pts). Write a proof-term

counttrues : (nat ⊃ {nat}) true

where (counttruesn) flips the coinn times and returns the number of heads.

counttrues zero =

counttrues (succ n) =

19

8 Classical Logic

In English usage, it is common to use a double-negative to expressweak affirmation. For example, the
statement

“It’s not unlikely that I will be at your party tonight.”

is weaker than the statement

“It’s likely that I will be at your party tonight.”

I.e., the first expresses a lower probability that I will come to the party than thesecond.

Task 1 (10 pts). Does this usage make more sense in constructive logic or in classical logic? Explain why.

20

