Final Exam

15-317: Constructive Logic

December 9, 2008

Name: Andrew ID:
Instructions
e This exam is open-book.
e You have 3 hours to complete the exam.
e There ares problems.
Prob 1| Prob 2| Prob 3| Prob 4| Prob 5| Prob 6| Prob 7| Prob 8| Total
Score
Max 60 40 45 45 40 40 20 10 300
Grader

1 Quantifiers

Recall the proof terms for quantifiers:

— T, wA
M:A e M :Vo:r. A t:T VE t:r M:Aft/a] M : 3x:T. A N:C gz
Ae.M :Va:r. A Mt : Alt/x] (t,M) :3dx:7. A let (x,u) =M inN:C

Task 1 (15 pts). Give anatural deduction proof tree for the following entailment. Note that does not
occur inB. Be sure to label each inference rule.

Vo (A(z) > B)

(Jy:m.A(y)) O B

Task 2 (15 pts). Give groof term for the following entailment. Note that does not occur irB.

f: 3z A(z)) D BE??? : Vy:1.(A(y) D B)

Task 3 (15 pts). Give anatural deduction proof tree for the following entailment. Note that does not
occur inB. Be sure to label each inference rule.

dz:7.(A(x) V B) "

(Jy:m.A(y)) vV B

Task 4 (15 pts). Give groof term for the following entailment. Note that does not occur irB.

s: (Fzr A(x)) A B F?7?: Jy:T.(A(y) A B)

2 Induction

Sometimes we have written recursive functions using a pattern-matmgngsion schemaFor nat , the
recursion schema is the following:

f z=M
f (s n) = M(n, f(n))
Using the schema, we can write

doubl e : nat -> nat
double z = z
double (s n) = s (s (double n))

for the proof term
fn x:nat => natrec(x, z, n.r. s(s(r)))

where the variable stands for the recursive call.
Consider the following intro and elim rules for lists of natural numbers, tted with proof-terms

x:nat , zs:list , J(zs)

n:nat [:list [:list My J([]) My : J(x :: xs)
] : list (n 1) : list listrec(l, My, z.xs.u.Ms) : J(I)

Task 1 (15 pts). Give a primitive recursion schema for list induction, analogotiseé@bove schema for
nat:

Consider the following proof-termwhich has typdist — nat — list:

Ax:list.listrec(x, Aa:nat.[], x:nat.as:list.r:nat — list.Aa:nat.(x + a) :: (r(z + a)))

Task 2 (10 pts). Translate this proof-term to a pattern-matching function definisamguyour recursion
schema.

listrec has the following local reductions:

listrec([], M1, x.xs.u.May) =pr M
listrec(n :: I, My, z.xsu.Ma) =g [n/z|[l/xs]|listrec(l, M1, x.xs.u.Ma)/u]Ms

Task 3 (15 pts). Compute the list that

s(1=(2:3:=7]))0
reduces to (you need to show only the final result, not each intermedipjestéexplain what this function
does.

O©oOoO~NO O WNPE

3 Prolog

In this problem, we will consider some Prolog code for matching a sffiagainst a regular expressidh
We consider the following regular expressions:

e The empty string] matches the empty regular exprességsi | on.
e The singleton strinfjc] matches the singleton regegpngl e(c) .

e The stringS matches the regexqgoncat (R1, R2) (usually writtenR; Ry) if S splits asS1 followed
by S2, whereS1 matchedRl andS2 matchesS2.

e The stringS matches the regexgt ar (R) (usually writtenR*) if S = [] or it splits asS1 followed
by S2, whereS1 matcheR andS2 matchest ar (R) .

Disjunctive regular expressioni®; | R2) can be explained similarly, but we elide them for brevity.
Consider the following Prolog code for regular expression matching:

append([],Ys,Ys).
append ([XXs],Ys,[X|Zs]) :—
append(Xs,Ys,Zs).

match ([], epsilon).
match ([C], single (C)).

match (Sconcat(R1,R2)) —
append(S1,S2,S),
match (S1,R1),
match (S2,R2).

match ([], star (R)).

match (S, star (R)) =
append(S1,S2,S),
match (S1,R),
match (S2, star (R)).

Task 1 (10 pts). We will considemat ch(S, R) with mode+ +: both the string and the regular expression
are inputs.
What mode doeappend need to have fomat ch to have this mode?

Task 2 (20 pts). There are some grouSdand R such thatrat ch(S, R) fails to terminate.
For each of the following termination metrics, identify a rule that violates that textmim order and
explain which subgoal violates it:

1. The regular expressiaR gets smaller.
The subgoal on line__ violates this termination order because

2. The stringS gets smaller.
The subgoal on line__ violates this termination order because

3. The stringS gets smaller, or it stays the same and the regexets smaller.
The subgoal on line__ violates this termination order because

4. The regular expressidi gets smaller, or it stays the same and the stfirgets smaller.
The subgoal on line__ violates this termination order because

Task 3 (5 pts). Give a specific strin§ and regexR for whichmat ch(S, R) fails to terminate. (Hint: your
non-terminating input may be a query on whight ch should fail, but instead loops.)

Task 4 (10 pts). It is possible to make the above code terminate on well-moded caltdmgaone extra
subgoal to one rule. Viewed as inference rules, this revised codddstiefine the same relation as the
original code; but the revised code will terminate under Prolog’s depghgiioof strategy.

Show the revised rule, and explain why it satisfies one of the above termmimatiers. Hint: you may
use term equality/ = N or disequalityM # N.

10

4 RIS

In this problem, we will consider a different implementation of regular exgloesmatching, using the
saturating logic programming language IRIS.

We represent the characters in the string using relatoridentifying the character at each position
(recall the edit distance problem in Homework 9, and the CKY parsing elegpnpsented in lecture). For
example, the stringt cg is represented by

at (0, a).
at(1,t).
at(2,c).
at (3,9).

We will represent regular expression matching with a relation

mat ch(?s, ?e, ?r)

meaning that the portion of the input string frata (inclusive!) to?e (exclusived) matches the regular
expressior?r . In the above example, we will have

mat ch(0, 1, single(a))
mat ch(0, 0, epsi | on)

because th@s character is included in the match e character is not.

11

Task 1 (25 pts). Give IRIS rules for regular expression matching. Do notwaty about saturation (see
the next question).

/1 match(?s, ?e, ?r)

/| EXAMPLE: rules for epsilon:

/1l There is an epsilon at the beginning of the string and after each character.
mat ch(0, 0, epsi | on).

mat ch(?s1, ?sl,epsilon) :- at(?s,?c), ?s + 1 = ?sl.

/[l TODO rul e for single(?c)

/1 TODO rule for concat(?r1, ?r2)

[l TODO three rules for star(?r)

12

Unless you already thought of this, your IRIS code will not saturatealbee it will attempt to saturate
the database withll regular expressions matching a string (and there may be infinitely many).

We need to restrict attention to those regular expressions that are sedmgps of the input (recall the
model checking problem in Homework 9).

Task 2 (10 pts). Assume the database is seeded with thefamexp(r 0) for the input regular expression
r 0 that we are interested in. Give rules Bumbexp so thatsubexp(R) holds iff Ris a subexpression of
the initial expressiom 0.

Task 3 (10 pts). Addsubexp subgoals to your rules on the previous page so that the matching algo-
rithm only considers subformulas of the input. The revised code shotitfystine following invariant: if

mat ch(?s, ?e, ?r) thensubexp(?r) . Avoid redundansubexp subgoals—check it only where it is
necessary.

13

5 Linear Logic

For each of the following linear logic entailments, cirflerivable or Not Derivable and:
e If the entailment iDerivable: give a sequent calculus derivation

e If the entailment iNot Derivable: explain why no derivation exists (i.e., attempt a derivation and
explain why you must get stuck)

Clearly label each inference rule.

Task 1 (14 pts).
Derivable / Not Derivable

(A B) o CIFA—(B—C(C)

14

Task 3 (13 pts).
Derivable / Not Derivable

(A— B)&(A — C) IF A — (B&C)

Task 3(13 pts).
Derivable / Not Derivable

(A~ B)®(A—-C)IFA— (B®C()

15

6 Linear logic programming

In the game Sokoban, a player must move a collection of boxes to certaifiegpgoal positions. An
example level looks like this:

01 ‘ moves: 0000 PUSl !ESI 0000 time: 0:00: 03

The player can move in four directions (north, south, east, west) on a gdile from the player’s
current location, each space on the grid is either unoccupied, or itioer@tdox, or it contains a wall. The
player can freely move to any unoccupied space. The player can maes baoly by pushing them to an
open square; he cannot pull them. (For example: A block with walls to tite aod to the east cannot be
moved.)

We will write a linear logic program to solve Sokoban puzzles.
We'll represent the board as a collection of cells with the following predicate

e least(Cl, C2) Thecelltotheeast of cell Cl is the cellC2. Similarly for! sout h(C1, C2) .
The board layout does not change over time.

e player(C The player is at celC.
e box(Q) There is a box at ce(T.
e clear(C) CellCisclear.

Walls are not specified explicitly—they are just the cells that are neithermptaydox nor clear.

In this problem, you will give rules for two actions; the remaining rules awdayous. You can write
your answer using either the rule notation we used in lecture, with inferares that consume their
premises (except tHe premises):

prem sel,
I prem se2,

concl usi on1l,
concl usi on2,

or in linear logic notation, as you did in Homework 10.

16

Task 1 (15 pts). Give a rule for the following action:

Move East: If the player is at a cell, and the cell to the east is clear, therajergan move to that cell.

Task 2 (15 pts). Give a rule for the following action:

Push East: If the player is at a cell, and the cell to the east has a box,ecelltto the east of that is clear,
then the player and the block can each move one cell to the east.

17

Task 3 (10 pts). Give a linear logic proposition whose proofs are solutions toolfeving Sokoban prob-
lem. You may assume that the layout of the boa&alqt , sout h) is already in the database.

e Initial state: The player is at celll, a box is at cellC2, and the cell€C3, C4, C5 are clear.

¢ Final state: The box is at cel4, and the player can be anywhere.

18

7 Lax Logic

Recall the proof terms for lax logic, which correspond to effectful cotaion:

x : Atrue

E + Alax Or M - Atrue M : {A} true E+:C|ax 0
{E} : {A} true M + Alax (let {z} =M in E) + C lax

We'll add a term

flip+ (T v T)lax

which non-deterministically returrtsue (represented asl()) with some probability and otherwise re-
turnsfalse (represented asr()).

Task 1 (20 pts). Write a proof-term

counttrues : (nat D {nat}) true

where €ounttrues n) flips the coinn times and returns the number of heads.

counttrues zero =

counttrues (succ n) =

19

8 Classical Logic

In English usage, it is common to use a double-negative to expreak affirmation For example, the
statement

“It's not unlikely that | will be at your party tonight.”
is weaker than the statement
“It's likely that | will be at your party tonight.”
l.e., the first expresses a lower probability that | will come to the party thasgbend.

Task 1 (10 pts). Does this usage make more sense in constructive logic or in aldsgic? Explain why.

20

