
Assignment 9:
Saturating Logic Programming

15-317: Constructive Logic

Out: Sunday, Nov 16, 2008
Due: Tuesday, November 25, 2008

1 Model Checking

In recitation, we discussedCTL model checking, an algorithm for checking properties of graphs.
The particular graphs we consider have the following properties:

• Each node is labeled with the atomic propositions true at that node

• Every node has at least one successor (which may be a self-loop)

We consider the following propositions:

1. Atomic propositionsP

2. Truth⊤

3. Conjunctionφ1∧φ2

4. Disjunctionφ1∨φ2

5. Negation¬φ

6. Some next stateEXφ

7. All next statesAXφ

8. Some future state along some pathEFφ

9. Some future state along all pathsAFφ

10. All future states along some pathEGφ

11. All future states along all pathsAGφ

For a fixed graphG, these propositions are true of a stateS in G (written S |= φ) under the following
conditions. We writeS 7→ S′ to mean there is an edge fromS to S′.

1. S|= P iff S is labeled withP

1

2. S|= ⊤ for all S

3. S|= φ1∧φ2 iff S|= φ1 andS|= φ2 and

4. S|= φ1∨φ2 iff S|= φ1 or S|= φ2.

5. S|= ¬φ iff it is not the case thatS|= φ

6. S|= EXφ iff there exists anS′ suchS 7→ S′ andS′ |= φ

7. S|= AXφ iff for all S′ if S 7→ S′ thenS′ |= φ

8. S0 |= EFφ iff there exists a pathS0 7→ S1 7→ S2 7→ ... such thatSi |= φ for somei ≥ 0.

9. S0 |= AFφ iff for all pathsS0 7→ S1 7→ S2 7→ ..., Si |= φ for somei ≥ 0.

10. S0 |= EGφ iff there exists a pathS0 7→ S1 7→ S2 7→ ... such thatSi |= φ for all i ≥ 0.

11. S0 |= AGφ iff for all pathsS0 7→ S1 7→ S2 7→ ..., Si |= φ for all i ≥ 0.

In recitation, we wrote a saturating logic programming for many of these connectives.

Task 1 (10 pts). Starting from the support code, add cases for the remaining connectives:EF,AX,AF,AG.
Hint: expressAX,AF,AG in terms ofEX,EF,EGand negation.

Note that you will need to run IRIS in well-founded mode for this problem:

iris program-file=<yourfile> well-founded

2 Edit Distance

The edit distance between an input string and an output string is a cost computed from the number of inserts,
deletes, and modifications necessary to transform the input into the output. Edit distance is used in variety
of applications: To suggest results for a misspelled search query, you might find a more popular query with
a small edit distance from the one the user submitted. Also, many computational biology algorithms involve
measuring the similarity between two proteins.

We use the following costs for edits: insert costs 100, delete costs 10, modifycosts 1. For example, the
possible edit distances between’atc’ and’agct’ include 101 (one insert, one modify), 102 (one insert,
two modifies), and so on.

We will represent the input and output strings with predicatesinput(n,c) andoutput(n,c), wheren
is a unary natural number (zero() or succ(n)) andc is one of’a’ ’t’ ’c’ ’g’.

Task 1 (10 pts). Your task is to define a predicatedist(i,o,c), wherei ando are natural numbers, andc
is an integer.dist(i,o,c) should hold iff there is a series of edits that transform the segment of the input
string from positioni to its end into the segment of the output string from positiono to its end, with costc.

Hint: you will want to consider five cases:

1. i ando are at the end of the respective strings

2. The characters ati ando are the same

2

3. The characters ati ando are not the same (use?ichar != ?ochar)

4. The character ati is deleted

5. The character ato is inserted

The relationADD(c1,c2,c3) means thatc3 is the sum of the integersc1 andc2.

3 Alias Analysis

One important compiler analysis isalias analysis, which approximates the values of registers and memory
cells. This allows you to answer questions like “do these two registers point tothe same location?”, which
are useful both for optimization (you can move code around more if it doesn’t use the same memory as other
code) and for checking program invariants.

An alias analysis mustoverapproximatethe values of registers and memory cells—because it is predict-
ing the behavior of a program fragment without running it. To keep the problem simple, we will define an
analysis that isflow-insensitive(the order of statements in the program is disregarded) andcontext-insensitive
(all executions of a statement are identified). This makes the analysis less precise than it could be. There
has been a great deal of research on more-precise analyses that are still effective and efficient (there are
trade-offs here:truth takes time).

We use a very simple assembly language with four forms of statement:

• l : x = n Store the numeric constantn in registerx.

• l : x = < y , z > Allocate a pair whose first component is the value of the registery and whose
second component is the value of the registerz, and store a pointer to this pair in the registerx

• l : x = y.f Set the value of the registerx to be the value of thef component of the pair pointed
to by registery. Heref is either’fst or ’snd.

• l : x.f = y Set the value of thef field of the pair pointed to by the registerx to be the value of
the registery

We want to define two relations:

• valueofreg(r,v) Registerr may hold the valuev

• valueoffield(l,f,v) Thef field of the pair stored at locationl r may hold the valuev

Valuesv are either integers orloc(l) for some locationl.
We identify memory locations with thesource lineat which the memory is allocated. So after a statement

l : x = < y , z > , we will say that the registerx holds the valueloc(l).

Task 1 (10 pts). Define a saturating logic programming that computes the above relations. See the support
code for hints and test cases.

Task 2 (10 pts). Analyze the time complexity of your code in terms of the numbern of statements in the
program. Because your analysis should only use values that come from the program, you can regard the
number of values as beingO(n).

3

• Give an upper bound on the size of the saturated database.

• Annotate each clause in your program with the number of prefix firings.

• State the overall time complexity of the program.

Please answer this task in comments in your IRIS file.

4 Handin

• You can run IRIS as follows:

/afs/andrew/course/15/317/bin/iris program-file=<yourfile>

• To hand in your code, copy three files to your handin directory:

Problem 1:

/afs/andrew/course/15/317/submit/<yourid>/hw07-mc.iris

Problem 2:

/afs/andrew/course/15/317/submit/<yourid>/hw09-edit.iris

Problem 3:

/afs/andrew/course/15/317/submit/<yourid>/hw07-alias.iris

4

