
Assignment 6:
Prolog

15-317: Constructive Logic

Out: Thursday, October 16, 2008
Due: Thursday, October 23, 2008, before class

1 Division (10 Points)

Here is code for addition and multiplication:

nat(z).
nat(s(N)) :- nat(N).

plus(z, N, N).
plus(s(M), N, s(P)) :- plus(M, N, P).

times(z, _, z).
times(s(N1), N2, N3_2) :-
times(N1, N2, N3),
plus(N3, N2, N3_2).

Task 1 (10 pts). Determine if thetimes predicate can be used to calculate exact division: Givenm andn,
find aq such thatm = (n * q), and fail if no suchq exists.

If so, state the mode with whichtimes is invoked to compute exact division, and argue thattimes has
that mode.

If not, give counterexamples for the different modes with whichtimes could be invoked to compute
exact division, and write another programexactDiv(m,n,q) to perform exact divison.

You may answer the written portion of this question in comments in your prolog file (the line comment
character is%) or in a separate written handin.

2 Unary to binary and back (10 Points)

We can represent a binary numbers as a list of bits, where 0 is represented by the empty list, and the most-
significant bit is at the end of list. This most-significant bit (the last element ofthe list) must be one: no
trailing zeros are permitted. For example, 2 is represented by the list[zz,oo], wherezz is the zero bit and
oo is the one bit.

Here are predicates recnogizing bits and binary numbers:

1

bit(zz). %% the zero bit
bit(oo). %% the one bit

bitlist([]).
bitlist([H|T]) :- bit(H),bitlist(T).

endsWithOO([oo]).
endsWithOO([_|T]) :- endsWithOO(T).

binaryNumber([]).
binaryNumber(L) :- bitlist(L),endsWithOO(L).

Task 1, code (7 pts). Define two relations to convert back and forth between unary and binary:

unaryToBinary(U,B) mode +U -B
binaryToUnary(U,B) mode -U +B

Task 2, written (3 pts). How do your two relations differ? Can you use the same relation with both modes?
You may answer this question in comments in your prolog file or in a separate written handin.

3 Mergesort (10 points)

Write a relation

mergesort(Un, Sorted) mode +Un -Sorted

that sorts a list of integers into increasing order using mergesort. Given any unsorted listUn, this pred-
icate must compute a listSorted containing the same elements in increasing order. Use the following
comparision predicates:

H1 =< H2
H1 > H2

Hint: you should define auxiliary predicates:

partition(In, FirstHalf, SecondHalf) mode +In -FirstHalf -SecondHalf
merge(L1, L2, L3) mode +L1 +L2 -L3

The first partitions a given listIn into two halves, and the second merges two sorted lists into a single
sorted list containing all of their elements.

2

4 Dutch National Flag (10 points)

The Dutch national flag problem is to take a list of elements that are either red,white, or blue and return a
list with all red elements first, followed by all white elements, with all blue elements last (the order in which
these colors appear on the Dutch national flag). We represent the property of being red, white, or blue with
three predicates,red(x), white(x), andblue(x). You may assume that every element of the input list
satisfies exactly one of these three predicates.

Write a Prolog program

dutchflag(L1,L2) mode +L1 -L2

to solve the Dutch national flag problem. Try to take advantage of the intrinsic expressive power of logic
programming to obtain an elegant program.

5 Running Prolog / Handin Instructions

• GNU Prolog is installed in

/afs/andrew/course/15/317/bin/gprolog

To run it, you must have thisbin directory in your path.

In tcsh, do this:

setenv PATH "/afs/andrew/course/15/317/bin:$PATH"

In bash, do this:

export PATH="/afs/andrew/course/15/317/bin:$PATH"

You may want to add this to your startup files so that you don’t have to resetyour path every time you
want to run Prolog.

Once you run Prolog, load your file using theconsult command:

| ?- consult(’yourfile.pl’).

Then you can run queries:

| ?- mergesort([2,4,6,5,1,3],Ls).

Ls = [1,2,3,4,5,6] ?

• To hand in your code, copy a filehw06.pl to your handin directory:

/afs/andrew/course/15/317/submit/<yourid>/hw06.pl

3

