
Chapter 1

Introduction

According to Wikipedia, logic is the study of the principles of valid inferences
and demonstration. From the breadth of this definition it is immediately clear
that logic constitutes an important area in the disciplines of philosophy and
mathematics. Logical tools and methods also play an essential role in the de-
sign, specification, and verification of computer hardware and software. It is
these applications of logic in computer science which will be the focus of this
course. In order to gain a proper understanding of logic and its relevance to
computer science, we will need to draw heavily on the much older logical tra-
ditions in philosophy and mathematics. We will discuss some of the relevant
history of logic and pointers to further reading throughout these notes. In this
introduction, we give only a brief overview of the contents and approach of this
class.

The course is divided into four parts:

I. Proofs as Evidence for Truth

II. Proofs as Programs

III. Proofs as Computations

IV. Proofs as Refutations

Proofs are central in all parts of the course, and give it its constructive nature.
In each part, we will exhibit connections between proofs and forms of compu-
tations studied in computer science. These connections will take quite different
forms, which shows the richness of logic as a foundational discipline at the nexus
between philosophy, mathematics, and computer science.

In Part I we establish the basic vocabulary and systematically study propo-
sitions and proofs, mostly from a philosophical perspective. The treatment will
be rather formal in order to permit an easy transition into computational appli-
cations. We will also discuss some properties of the logical systems we develop
and strategies for proof search. We aim at a systematic account for the usual

Draft of August 26, 2008

2 Introduction

forms of logical expression, providing us with a flexible and thorough founda-
tion for the remainder of the course. Exercises in this section will test basic
understanding of logical connectives and how to reason with them.

In Part II we focus on constructive reasoning. This means we consider
only proofs that describe algorithms. This turns out to be quite natural in
the framework we have established in Part I. In fact, it may be somewhat
surprising that many proofs in mathematics today are not constructive in this
sense. Concretely, we find that for a certain fragment of logic, constructive
proofs correspond to functional programs and vice versa. More generally, we
can extract functional programs from constructive proofs of their specifications.
We often refer to constructive reasoning as intuitionistic, while non-constructive
reasoning is classical. Exercises in this part explore the connections between
proofs and programs, and between theorem proving and programming.

In Part III we study a different connection between logic and programs where
proofs are the result of computation rather than the starting point as in Part
II. This gives rise to the paradigm of logic programming where the process of
computation is one of systematic proof search. Depending on how we search
for proofs, different kinds of algorithms can be described at a very high level
of abstraction. Exercises in this part focus on exploiting logic programming to
implement various algorithms in concrete languages such as Prolog.

In Part IV we study fragments of logic for which the question whether a
proposition is true of false can be effectively decided by an algorithm. Such
fragments can be used to specify some aspects of the behavior of software or
hardware and then automatically verify them. A key technique here is model-
checking that exhaustively explores the truth of a proposition over a finite state
space. Model-checking and related methods are routinely used in industry, for
example, to support hardware design by detecting design flaws at an early stage
in the development cycle. In this application area, the constructive nature of
proofs is usually exploited to generate counterexamples which are embedded in
refutations of conjectures. Exercises in this part may involve the use of tools
for model-checking, or the implementation of decision procedures for simple
theories.

There are several related goals for this course. The first is simply that we
would like students to gain a good working knowledge of constructive logic
and its relation to computation. This includes the translation of informally
specified problems to logical language, the ability to recognize correct proofs
and construct them. The skills further include writing and inductively proving
the correctness of recursive programs.

The second set of goals concerns the transfer of this knowledge to other
kinds of reasoning. We will try to illuminate logic and the underlying philo-
sophical and mathematical principles from various points of view. This is im-
portant, since there are many different kinds of logics for reasoning in different
domains or about different phenomena1, but there are relatively few underlying

1for example: classical, intuitionistic, modal, second-order, temporal, belief, linear, rele-
vance, affirmation, . . .

Draft of August 26, 2008

3

philosophical and mathematical principles. Our second goal is to teach these
principles so that students can apply them in different domains where rigorous
reasoning is required.

A third set of goals relates to specific, important applications of logic in
the practice of computer science. Examples are the design of type systems for
programming languages, specification languages, or verification tools for finite-
state systems. While we do not aim at teaching the use of particular systems
or languages, students should have the basic knowledge to quickly learn them,
based on the materials presented in this class.

These learning goals present different challenges for students from different
disciplines. Lectures, recitations, exercises, and the study of these notes are all
necessary components for reaching them. These notes do not cover all aspects
of the material discussed in lecture, but provide a point of reference for defini-
tions, theorems, and motivating examples. Recitations are intended to answer
students’ questions and practice problem solving skills that are critical for the
homework assignments. Exercises are a combination of written homework to be
handed at lecture and theorem proving or programming problems to be submit-
ted electronically using the software written in support of the course. A brief
introduction to this software is included in these notes, a separate manual is
available with the on-line course material.

Draft of August 26, 2008

4 Introduction

Draft of August 26, 2008

Chapter 2

Propositions and Proofs

The goal of this chapter is to develop the two principal notions of logic, namely
propositions and proofs. There is no universal agreement about the proper foun-
dations for these notions. One approach, which has been particularly successful
for applications in computer science, is to understand the meaning of a propo-
sition by understanding its proofs. In the words of Martin-Löf [ML96, Page
27]:

The meaning of a proposition is determined by [. . .] what counts as
a verification of it.

A verification may be understood as a certain kind of proof that only exam-
ines the constituents of a proposition. This is analyzed in greater detail by Dum-
mett [Dum91] although with less direct connection to computer science. The
system of inference rules that arises from this point of view is natural deduction,
first proposed by Gentzen [Gen35] and studied in depth by Prawitz [Pra65].

In this chapter we apply Martin-Löf’s approach, which follows a rich philo-
sophical tradition, to explain the basic propositional connectives. We will see
later that universal and existential quantifiers and types such as natural num-
bers, lists, or trees naturally fit into the same framework.

2.1 Judgments and Propositions

The cornerstone of Martin-Löf’s foundation of logic is a clear separation of the
notions of judgment and proposition. A judgment is something we may know,
that is, an object of knowledge. A judgment is evident if we in fact know it.

We make a judgment such as “it is raining”, because we have evidence for it.
In everyday life, such evidence is often immediate: we may look out the window
and see that it is raining. In logic, we are concerned with situation where the
evidence is indirect: we deduce the judgment by making correct inferences from
other evident judgments. In other words: a judgment is evident if we have a
proof for it.

Draft of August 28, 2008

6 Propositions and Proofs

The most important judgment form in logic is “A is true”, where A is a
proposition. In order to reason correctly, we therefore need a second judgment
form “A is a proposition”. But there are many others that have been studied
extensively. For example, “A is false”, “A is true at time t” (from temporal
logic), “A is necessarily true” (from modal logic), “program M has type τ” (from
programming languages), etc.

Returning to the first two judgments, let us try to explain the meaning of
conjunction. We write A prop for the judgment “A is a proposition” and A true
for the judgment “A is true” (presupposing that A prop). Given propositions
A and B, we want to form the compound proposition “A and B”, written more
formally as A ∧B. We express this in the following inference rule:

A prop B prop

A ∧B prop
∧F

This rule allows us to conclude that A ∧ B prop if we already know that
A prop and B prop. In this inference rule, A and B are schematic variables, and
∧F is the name of the rule (which is short for “conjunction formation”). The
general form of an inference rule is

J1 . . . Jn

J
name

where the judgments J1, . . . , Jn are called the premises, the judgment J is called
the conclusion. In general, we will use letters J to stand for judgments, while
A, B, and C are reserved for propositions.

Once the rule of conjunction formation (∧F) has been specified, we know
that A∧B is a proposition, if A and B are. But we have not yet specified what
it means, that is, what counts as a verification of A ∧ B. This is accomplished
by the following inference rule:

A true B true
A ∧B true

∧I

Here the name ∧I stands for “conjunction introduction”, since the conjunction
is introduced in the conclusion. We take this as specifying the meaning of A∧B
completely. So what can be deduce if we know that A∧B is true? By the above
rule, to have a verification for A ∧ B means to have verifications for A and B.
Hence the following two rules are justified:

A ∧B true
A true

∧EL
A ∧B true

B true
∧ER

The name ∧EL stands for “left conjunction elimination”, since the conjunction
in the premise has been eliminated in the conclusion. Similarly ∧ER stands for
“right conjunction elimination”.

Draft of August 28, 2008

2.2 Hypothetical Judgments 7

We will later see what precisely is required in order to guarantee that the
formation, introduction, and elimination rules for a connective fit together cor-
rectly. For now, we will informally argue the correctness of the elimination
rules.

As a second example we consider the proposition “truth” written as >.

> prop
>F

Truth should always be true, which means its introduction rule has no premises.

> true
>I

Consequently, we have no information if we know > true, so there is no elimi-
nation rule.

A conjunction of two propositions is characterized by one introduction rule
with two premises, and two corresponding elimination rules. We may think of
truth as a conjunction of zero propositions. By analogy it should then have one
introduction rule with zero premises, and zero corresponding elimination rules.
This is precisely what we wrote out above.

2.2 Hypothetical Judgments

Consider the following derivation, for some arbitrary propositions A, B, and C:

A ∧ (B ∧ C) true

B ∧ C true
∧ER

B true
∧EL

Have we actually proved anything here? At first glance it seems that cannot be
the case: B is an arbitrary proposition; clearly we should not be able to prove
that it is true. Upon closer inspection we see that all inferences are correct, but
the first judgment A ∧ (B ∧ C) true has not been justified. We can extract the
following knowledge:

From the assumption that A ∧ (B ∧ C) is true, we deduce that B
must be true.

This is an example of a hypothetical judgment, and the figure above is an
hypothetical derivation. In general, we may have more than one assumption, so
a hypothetical derivation has the form

J1 · · · Jn

...
J

Draft of August 28, 2008

8 Propositions and Proofs

where the judgments J1, . . . , Jn are unproven assumptions, and the judgment J
is the conclusion. Note that we can always substitute a proof for any hypoth-
esis Ji to eliminate the assumption. We call this the substitution principle for
hypotheses.

Many mistakes in reasoning arise because dependencies on some hidden as-
sumptions are ignored. When we need to be explicit, we write J1, . . . , Jn ` J for
the hypothetical judgment which is established by the hypothetical derivation
above. We may refer to J1, . . . , Jn as the antecedents and J as the succedent of
the hypothetical judgment.

One has to keep in mind that hypotheses may be used more than once, or
not at all. For example, for arbitrary propositions A and B,

A ∧B true
B true

∧ER
A ∧B true

A true
∧EL

B ∧A true
∧I

can be seen a hypothetical derivation of A ∧B true ` B ∧A true.
With hypothetical judgments, we can now explain the meaning of implication

“A implies B” or “if A then B” (more formally: A⊃B). First the formation
rule:

A prop B prop

A⊃B prop
⊃F

Next, the introduction rule: A⊃B is true, if B is true under the assumption
that A is true.

A true
u

...
B true

A⊃B true
⊃Iu

The tricky part of this rule is the label u. If we omit this annotation, the rule
would read

A true
...

B true
A⊃B true

⊃I

which would be incorrect: it looks like a derivation of A⊃B true from the
hypothesis A true. But the assumption A true is introduced in the process of
proving A⊃B true; the conclusion should not depend on it! Therefore we label
uses of the assumption with a new name u, and the corresponding inference
which introduced this assumption into the derivation with the same label u.

Draft of August 28, 2008

2.2 Hypothetical Judgments 9

As a concrete example, consider the following proof of A⊃(B⊃(A ∧B)).

A true
u

B true
w

A ∧B true
∧I

B⊃(A ∧B) true
⊃Iw

A⊃(B⊃(A ∧B)) true
⊃Iu

Note that this derivation is not hypothetical (it does not depend on any assump-
tions). The assumption A true labeled u is discharged in the last inference, and
the assumption B true labeled w is discharged in the second-to-last inference.
It is critical that a discharged hypothesis is no longer available for reasoning,
and that all labels introduced in a derivation are distinct.

Finally, we consider what the elimination rule for implication should say. By
the only introduction rule, having a proof of A⊃B true means that we have a
hypothetical proof of B true from A true. By the substitution principle, if we
also have a proof of A true then we get a proof of B true.

A⊃B true A true

B true
⊃E

This completes the rules concerning implication.
With the rules so far, we can write out proofs of simple properties con-

cerning conjunction and implication. The first expresses that conjunction is
commutative—intuitively, an obvious property.

A ∧B true
u

B true
∧ER

A ∧B true
u

A true
∧EL

B ∧A true
∧I

(A ∧B)⊃(B ∧A) true
⊃Iu

When we construct such a derivation, we generally proceed by a combination
of bottom-up and top-down reasoning. The next example is a distributivity
law, allowing us to move implications over conjunctions. This time, we show
the partial proofs in each step. Of course, other sequences of steps in proof
constructions are also possible.

...
(A⊃(B ∧ C))⊃((A⊃B) ∧ (A⊃C)) true

First, we use the implication introduction rule bottom-up.

A⊃(B ∧ C) true
u

...
(A⊃B) ∧ (A⊃C) true

(A⊃(B ∧ C)⊃((A⊃B) ∧ (A⊃C)) true
⊃Iu

Draft of August 28, 2008

10 Propositions and Proofs

Next, we use the conjunction introduction rule bottom-up.

A⊃(B ∧ C) true
u

...
A⊃B true

A⊃(B ∧ C) true
u

...
A⊃C true

(A⊃B) ∧ (A⊃C) true
∧I

(A⊃(B ∧ C))⊃((A⊃B) ∧ (A⊃C)) true
⊃Iu

We now pursue the left branch, again using implication introduction bottom-
up.

A⊃(B ∧ C) true
u

A true
w

...
B true

A⊃B true
⊃Iw

A⊃(B ∧ C) true
u

...
A⊃C true

(A⊃B) ∧ (A⊃C) true
∧I

(A⊃(B ∧ C))⊃((A⊃B) ∧ (A⊃C)) true
⊃Iu

Note that the hypothesis A true is available only in the left branch, but
not in the right one: it is discharged at the inference ⊃Iw. We now switch to
top-down reasoning, taking advantage of implication elimination.

A⊃(B ∧ C) true
u

A true
w

B ∧ C true
⊃E

...
B true

A⊃B true
⊃Iw

A⊃(B ∧ C) true
u

...
A⊃C true

(A⊃B) ∧ (A⊃C) true
∧I

(A⊃(B ∧ C))⊃((A⊃B) ∧ (A⊃C)) true
⊃Iu

Now we can close the gap in the left-hand side by conjunction elimination.

A⊃(B ∧ C) true
u

A true
w

B ∧ C true
⊃E

B true
∧EL

A⊃B true
⊃Iw

A⊃(B ∧ C) true
u

...
A⊃C true

(A⊃B) ∧ (A⊃C) true
∧I

(A⊃(B ∧ C))⊃((A⊃B) ∧ (A⊃C)) true
⊃Iu

Draft of August 28, 2008

2.3 Disjunction and Falsehood 11

The right premise of the conjunction introduction can be filled in analo-
gously. We skip the intermediate steps and only show the final derivation.

A⊃(B ∧ C) true
u

A true
w

B ∧ C true
⊃E

B true
∧EL

A⊃B true
⊃Iw

A⊃(B ∧ C) true
u

A true
v

B ∧ C true
⊃E

C true
∧ER

A⊃C true
⊃Iv

(A⊃B) ∧ (A⊃C) true
∧I

(A⊃(B ∧ C))⊃((A⊃B) ∧ (A⊃C)) true
⊃Iu

2.3 Disjunction and Falsehood

So far we have explained the meaning of conjunction, truth, and implication.
The disjunction “A or B” (written as A ∨ B) is more difficult, but does not
require any new judgment forms.

A prop B prop

A ∨B prop
∨F

Disjunction is characterized by two introduction rules: A∨B is true, if either
A or B is true.

A true
A ∨B true

∨IL
B true

A ∨B true
∨IR

Now it would be incorrect to have an elimination rule such as
A ∨B true

A true
∨EL?

because even if we know that A∨B is true, we do not know whether the disjunct
A or the disjunct B is true. Concretely, with such a rule we could derive the
truth of every proposition A as follows:

> true
>I

A ∨ > true
∨IR

A true
∨EL?

Thus we take a different approach. If we know that A ∨B is true, we must
consider two cases: A true and B true. If we can prove a conclusion C true in
both cases, then C must be true! Written as an inference rule:

A ∨B true

A true
u

...
C true

B true
w

...
C true

C true
∨Eu,w

Draft of August 28, 2008

12 Propositions and Proofs

Note that we use once again the mechanism of hypothetical judgments. In the
proof of the second premise we may use the assumption A true labeled u, in the
proof of the third premise we may use the assumption B true labeled w. Both
are discharged at the disjunction elimination rule.

Let us justify the conclusion of this rule more explicitly. By the first premise
we know A ∨ B true. The premises of the two possible introduction rules are
A true and B true. In case A true we conclude C true by the substitution
principle and the second premise: we substitute the proof of A true for any use
of the assumption labeled u in the hypothetical derivation. The case for B true
is symmetric, using the hypothetical derivation in the third premise.

Because of the complex nature of the elimination rule, reasoning with dis-
junction is more difficult than with implication and conjunction. As a simple
example, we prove the commutativity of disjunction.

...
(A ∨B)⊃(B ∨A) true

We begin with an implication introduction.

A ∨B true
u

...
B ∨A true

(A ∨B)⊃(B ∨A) true
⊃Iu

At this point we cannot use either of the two disjunction introduction rules.
The problem is that neither B nor A follow from our assumption A∨B! So first
we need to distinguish the two cases via the rule of disjunction elimination.

A ∨B true
u

A true
v

...
B ∨A true

B true
w

...
B ∨A true

B ∨A true
∨Ev,w

(A ∨B)⊃(B ∨A) true
⊃Iu

The assumption labeled u is still available for each of the two proof obligations,
but we have omitted it, since it is no longer needed.

Now each gap can be filled in directly by the two disjunction introduction
rules.

A ∨B true
u

A true
v

B ∨A true
∨IR

B true
w

B ∨A true
∨IL

B ∨A true
∨Ev,w

(A ∨B)⊃(B ∨A) true
⊃Iu

Draft of August 28, 2008

2.4 Natural Deduction 13

This concludes the discussion of disjunction. Falsehood (written as ⊥, some-
times called absurdity) is a proposition that should have no proof! Therefore
there are no introduction rules, although we of course have the standard forma-
tion rule.

⊥ prop
⊥F

Since there cannot be a proof of ⊥ true, it is sound to conclude the truth of any
arbitrary proposition if we know ⊥ true. This justifies the elimination rule

⊥ true
C true

⊥E

We can also think of falsehood as a disjunction between zero alternatives. By
analogy with the binary disjunction, we therefore have zero introduction rules,
and an elimination rule in which we have to consider zero cases. This is precisely
the ⊥E rule above.

From this is might seem that falsehood it useless: we can never prove it.
This is correct, except that we might reason from contradictory hypotheses!
We will see some examples when we discuss negation, since we may think of the
proposition “not A” (written ¬A) as A⊃⊥. In other words, ¬A is true precisely
if the assumption A true is contradictory because we could derive ⊥ true.

2.4 Natural Deduction

The judgments, propositions, and inference rules we have defined so far collec-
tively form a system of natural deduction. It is a minor variant of a system
introduced by Gentzen [Gen35] and studied in depth by Prawitz [Pra65]. One
of Gentzen’s main motivations was to devise rules that model mathematical
reasoning as directly as possible, although clearly in much more detail than in
a typical mathematical argument.

The specific interpretation of the truth judgment underlying these rules is
intuitionistic or constructive. This differs from the classical or Boolean interpre-
tation of truth. For example, classical logic accepts the proposition A∨ (A⊃B)
as true for arbitrary A and B, although in the system we have presented so far
this would have no proof. Classical logic is based on the principle that every
proposition must be true or false. If we distinguish these cases we see that
A∨ (A⊃B) should be accepted, because in case that A is true, the left disjunct
holds; in case A is false, the right disjunct holds. In contrast, intuitionistic logic
is based on explicit evidence, and evidence for a disjunction requires evidence
for one of the disjuncts. We will return to classical logic and its relationship to
intuitionistic logic later; for now our reasoning remains intuitionistic since, as
we will see, it has a direct connection to functional computation, which classical
logic lacks.

We summarize the rules of inference for the truth judgment introduced so
far in Figure 2.1. We omit the straightforward formation rules.

Draft of August 28, 2008

14 Propositions and Proofs

Introduction Rules Elimination Rules

A true B true
A ∧B true

∧I
A ∧B true

A true
∧EL

A ∧B true
B true

∧ER

> true
>I

no >E rule

A true
u

...
B true

A⊃B true
⊃Iu

A⊃B true A true

B true
⊃E

A true
A ∨B true

∨IL
B true

A ∨B true
∨IR

A ∨B true

A true
u

...
C true

B true
w

...
C true

C true
∨Eu,w

no ⊥I rule
⊥ true
C true

⊥E

Figure 2.1: Rules for intuitionistic natural deduction

Draft of August 28, 2008

Bibliography

[Dum91] Michael Dummett. The Logical Basis of Metaphysics. Harvard Uni-
versity Press, Cambridge, Massachusetts, 1991. The William James
Lectures, 1976.

[Gen35] Gerhard Gentzen. Untersuchungen über das logische Schließen. Math-
ematische Zeitschrift, 39:176–210, 405–431, 1935. English translation
in M. E. Szabo, editor, The Collected Papers of Gerhard Gentzen,
pages 68–131, North-Holland, 1969.

[ML96] Per Martin-Löf. On the meanings of the logical constants and the
justifications of the logical laws. Nordic Journal of Philosophical Logic,
1(1):11–60, 1996.

[Pra65] Dag Prawitz. Natural Deduction. Almquist & Wiksell, Stockholm,
1965.

Draft of August 28, 2008

2.5 Harmony 15

2.5 Harmony

In the verificationist definition of the logical connectives via their introduction
rules we have briefly justified the elimination rules. In this section we study the
balance between introduction and elimination rules more closely. In order to
show that the two are in harmony we establish two properties: local soundness
and local completeness.
Local soundness shows that the elimination rules are not too strong: no matter
how we apply elimination rules to the result of an introduction we cannot gain
any new information. We demonstrate this by showing that we can find a more
direct proof of the conclusion of the elimination which does not first introduce
and then eliminate the connective in question. This is witnessed by a local
reduction of the given introduction and the subsequent elimination.
Local completeness shows that the elimination rules are not too weak: there
is always a way to apply elimination rules so that we can reconstitute a proof
of the original proposition from the results by applying introduction rules. This
is witnessed by a local expansion of an arbitrary given derivation into some
eliminations followed by some introductions.

Connectives whose introduction and elimination rules are in harmony in the
sense that they are locally sound and complete are properly defined from the
verificationist perspective. If not, the proposed connective should be viewed
with suspicion. Another criterion we would like to apply uniformly is that both
introduction and elimination rules are pure: the may refer and employ different
judgments and judgment forms, but they may not refer to other propositions
which could create a dangerous dependency of the various connectives on each
other. As we present correct definitions we will occasionally also give some
counterexamples to illustrate the consequences of violating the principles behind
the patterns of valid inference.

In the discussion of each individual connective below we use the notation

D
A true =⇒R

D′

A true

for the local reduction of a deduction D to another deduction D′ of the same
judgment A true. In fact, =⇒R can itself be a higher level judgment relating
two proofs, D and D′, although we will not directly exploit this point of view.
Similarly,

D
A true =⇒E

D′

A true

is the notation of the local expansion of D to D′.

Conjunction. We start with local soundness. Since there are two elimination
rules and one introduction, it turns out we have two cases to consider. In either

Draft of September 2, 2008

16 Propositions and Proofs

case, we can easily reduce.

D
A true

E
B true

A ∧B true
∧I

A true
∧EL

=⇒R

D
A true

D
A true

E
B true

A ∧B true
∧I

B true
∧ER

=⇒R

E
B true

Local completeness requires us to apply eliminations to an arbitrary proof
of A∧B true in such a way that we can reconstitute a proof of A∧B from the
results.

D
A ∧B true =⇒E

D
A ∧B true

A true
∧EL

D
A ∧B true

B true
∧ER

A ∧B true
∧I

As an example where local completeness might fail, consider the case where
we “forget” the right elimination rule for conjunction. The remaining rule is still
locally sound, but not locally complete because we cannot extract a proof of B
from the assumption A∧B. Now, for example, we cannot prove (A∧B)⊃(B∧A)
even though this should clearly be true.

Substitution Principle. We need the defining property for hypothetical
judgments before we can discuss implication. Intuitively, we can always sub-
stitute a deduction of A true for any use of a hypothesis A true. In order to
avoid ambiguity, we make sure assumptions are labelled and we substitute for
all uses of an assumption with a given label. Note that we can only substitute
for assumptions that are not discharged in the subproof we are considering. The
substitution principle then reads as follows:

If

A true
u

E
B true

is a hypothetical proof of B true under the undischarged hypothesis
A true labelled u, and

D
A true

Draft of September 2, 2008

2.5 Harmony 17

is a proof of A true then
D

A true
u

E
B true

is our notation for substituting D for all uses of the hypothesis la-
belled u in E . This deduction, also sometime written as [D/u]E no
longer depends on u.

Implication. To witness local soundness, we reduce an implication introduc-
tion followed by an elimination using the substitution operation.

A true
u

E
B true

A⊃B true
⊃Iu D

A true

B true
⊃E

=⇒R

D
A true

u

E
B true

The conditions on the substitution operation is satisfied, because u is introduced
at the ⊃Iu inference and therefore not discharged in E .

Local completeness is witnessed by the following expansion.

D
A⊃B true =⇒E

D
A⊃B true A true

u

B true
⊃E

A⊃B true
⊃Iu

Here u must be chosen fresh: it only labels the new hypothesis A true which is
used only once.

Disjunction. For disjunction we also employ the substitution principle be-
cause the two cases we consider in the elimination rule introduce hypotheses.
Also, in order to show local soundness we have two possibilities for the intro-
duction rule, in both situations followed by the only elimination rule.

D
A true

A ∨B true
∨IL

A true
u

E
C true

B true
w

F
C true

C true
∨Eu,w

=⇒R

D
A true

u

E
C true

D
B true

A ∨B true
∨IR

A true
u

E
C true

B true
w

F
C true

C true
∨Eu,w

=⇒R

D
B true

w

F
C true

Draft of September 2, 2008

18 Propositions and Proofs

An example of a rule that would not be locally sound is

A ∨B true
A true

∨EL?

and, indeed, we would not be able to reduce

A ∨B true
B true

∨IR

A true
∨EL?

In fact we can now derive a contradiction from no assumption, which means the
whole system is incorrect.

> true
>I

⊥ ∨> true
∨IR

⊥ true
∨EL?

Local completeness of disjunction distinguishes cases on the known A ∨
B true, using A ∨B true as the conclusion.

D
A ∨B true =⇒L

D
A ∨B true

A true
u

A ∨B true
∨IL

B true
w

A ∨B true
∨IR

A ∨B true
∨Eu,w

Visually, this looks somewhat different from the local expansions for conjunction
or implication. It looks like the elimination rule is applied last, rather than first.
Mostly, this is due to notation: the above represents the step from using the
knowledge of A∨B true and eliminating it to obtain the hypotheses A true and
B true in the two cases.

Truth. The local constant > has only an introduction rule, but no elimina-
tion rule. Consequently, there are no cases to check for local soundness: any
introduction followed by any elimination can be reduced.

However, local completeness still yields a local expansion: Any proof of
> true can be trivially converted to one by >I.

D
> true =⇒E > true

>I

Falsehood. As for truth, there is no local reduction because local soundness
is trivially satisfied since we have no introduction rule.

Local completeness is slightly tricky. Literally, we have to show that there
is a way to apply an elimination rule to any proof of ⊥ true so that we can
reintroduce a proof of ⊥ true from the result. However, there will be zero cases

Draft of September 2, 2008

2.6 Verifications 19

to consider, so we apply no introductions. Nevertheless, the following is the
right local expansion.

D
⊥ true =⇒L

D
⊥ true

⊥ true
⊥E

Reasoning about situation when falsehood is true may seem vacuous, but is
common in practice because it corresponds to reaching a contradiction. In intu-
itionistic reasoning, this occurs when we prove A⊃⊥ which is often abbreviated
as ¬A. In classical reasoning it is even more frequent, due to the rule of proof
by contradiction.

2.6 Verifications

The verificationist point of view on the meaning of a proposition is that it is
determined by its verifications. Intuitively, a verification should be a proof
that only analyzes the constituents of a propositions. This restriction of the
space of all possible proofs is necessary so that the definition is well-founded.
For example, if in order to understand the meaning of A, we would have to
understand ther meaning of B⊃A and B, the whole program of understanding
the meaning of the connectives by their proofs is in jeopardy because B could
be a proposition containing, say, A. But the meaning of A would then in turn
depend on the meaning of A, creating a vicious cycle.

In this section we will make the structure of verifications more explicit. We
write A↑ for the judgment “A has a verification”. Naturally, this should mean
that A is true, and that the evidence for that has a special form. Eventually we
will also establish the converse: if A is true than A has a verification.

Conjunction is easy to understand. A verification of A∧B should consist of
a verification of A and a verification of B.

A↑ B↑

A ∧B↑
∧I

We reuse here the names of the introduction rule, because this rule is strictly
analogous to the introduction rule for the truth of a conjunction.

Implication, however, introduces a new hypothesis which is not explicitly
justified by an introduction rule but just a new label. For example, in the proof

A ∧B true
u

A true
∧EL

(A ∧B)⊃A true
⊃Iu

the conjunction A ∧B is not justified by an introduction.
The informal discussion of proof search strategies earlier, namely to use

introduction rules from the bottom up and elimination rules from the top down

Draft of September 2, 2008

20 Propositions and Proofs

contains the answer. We introduce a second judgment, A↓ which means “A may
be used”. A↓ should be the case when either A true is a hypothesis, or A is
deduced from a hypothesis via elimination rules. Our local soundness arguments
provide some evidence that we cannot deduce anything incorrect in this manner.

We now go through the connectives in turn, defining verifications and uses.

Conjunction. In summary of the discussion above, we obtain:

A↑ B↑

A ∧B↑
∧I

A ∧B↓

A↓
∧EL

A ∧B↓

B↓
∧ER

The left elimination rule can be read as: “If we can use A ∧ B we can use A”,
and similarly for the right elimination rule.

Implication. The introduction rule creates a new hypothesis, which we may
use in a proof. The assumption is therefore of the judgment A↓

A↓
u

...
B↑

A⊃B↑
⊃u

In order to use an implication A⊃B we require a verification of A. Just
requiring that A may be used would be too weak, as can be seen when trying
to prove ((A⊃A)⊃B)⊃B↑. It should also be clear from the fact that we are
not eliminating a connective from A.

A⊃B↓ A↑

B↓
⊃E

Disjunction. The verifications of a disjunction immediately follow from their
introduction rules.

A↑

A ∨B↑
∨IL

B↑

A ∨B↑
∨IR

A disjunction is used in a proof by cases, called here ∨E. This introduces two
new hypotheses, and each of them may be used in the corresponding subproof.
Whenever we set up a hypothetical judgment we are trying to find a verification
of the conclusion, possibly with uses of hypotheses. So the conclusion of ∨E
should be a verification.

A ∨B↓

A↓
u

...
C↑

B↓
w

...
C↑

C↑
∨Eu,w

Draft of September 2, 2008

2.6 Verifications 21

Truth. The only verification of truth is the trival one.

>↑
>I

A hypothesis >↓ cannot be used because there is no elimination rule for >.

Falsehood. There is no verification of falsehood because we have no intro-
duction rule.

We can use falsehood, signifying a contradiction from our current hypotheses,
to verify any conclusion. This is the zero-ary case of a disjunction.

⊥↓

C↑
⊥E

Atomic propositions. How to we construct a verification of an atomic propo-
sition P? We cannot break down the structure of P because there is none, so
we can only proceed if we already know P is true. This can only come from
a hypothesis, so we have a rule that lets us use the knowledge of an atomic
proposition to construct a verification.

P↓

P↑
↓↑

This rule has a special status in that it represents a change in judgments but
is not tied to a particular local connective. We call this a judgmental rule in
order to distinguish it from the usual introduction and elimination rules that
characterize the connectives.

Global soundness. Local soundness is an intrinsic property of each connec-
tive, asserting that the elimination rules for it are not too strong given the
introduction rules. Global soundness is its counterpart for the whole system
of inference rules. It says that if an arbitrary proposition A has a verification
than we may use A without gaining any information. That is, for arbitrary
propositions A and C:

If A↑ and

A↓
...

C↑ then C↑.

We would want to prove this using a substitution principle, except that the judg-
ment A↑ and A↓ do not match. In the end, the arguments for local soundness
will help use carry out this proof later in this course.

Draft of September 2, 2008

22 Propositions and Proofs

Global completeness. Local completeness is also an intrinsic property of
each connective. It asserts that the elimination rules are not too weak, given
the introduction rule. Global completeness is its counterpart for the whole
system of inference rules. It says that if we may use A than we can construct
from this a verification of A. That is, for arbitrary propositions A:

A↑
...

A↓.

Global completeness follows from local completeness rather directly by induction
on the structure of A.

Global soundness and completeness are properties of whole deductive sys-
tems. Their proof must be carried out in a mathematical metalanguage which
makes them a bit different than the formal proofs that we have done so far
within natural deduction. Of course, we would like them to be correct as well,
which means they should follow the same principles of valid inference that we
have laid out so far.

There are two further properties we would like, relating truth, verifications,
and uses. The first is that if A has a verification then A is true. Once we add
that if A may be used then A is true, this is rather evident since we have just
specialized the introduction and elimination rules, except for the judgmental
rule ↓↑. But under the interpretation of verification and use as truth, this
inference becomes redundant.

Significantly more difficult is the property that if A is true then A has a
verification. Since we justified the meaning of the connectives from their ver-
ifications, a failure of this property would be devastating to the verificationist
program. Fortunately it holds and can be proved by exhibiting a process of
proof normalization that takes an arbitrary proof of A true and constructs a
verification of A.

All these properties in concert show that our rules are well constructed, lo-
cally as well as globally. Experience with many other logical systems indicates
that this is not an isolated phenomenon: we can employ the verificationist point
of view to give coherent sets of rules not just for constructive logic, but for clas-
sical logic, temporal logic, spatial logic, modal logic, and many other logics that
area of interest in computer science. Taken together, these constitute strong ev-
idence that separating judgments from propositions and taking a verificationist
point of view in the definition of the logical connectives is indeed a proper and
useful foundation for logic.

Draft of September 2, 2008

Chapter 3

Proofs as Programs

In this chapter we investigate a computational interpretation of constructive
proofs and relate it to functional programming. On the propositional fragment
of logic this is referred to as the Curry-Howard isomorphism [How80]. From the
very outset of the development of constructive logic and mathematics, a central
idea has been that proofs ought to represent constructions. The Curry-Howard
isomorphism is only a particularly poignant and beautiful realization of this
idea. In a highly influential subsequent paper, Martin-Löf [ML80] developed it
further into a more expressive calculus called type theory.

3.1 Propositions as Types

In order to illustrate the relationship between proofs and programs we introduce
a new judgment:

M : A M is a proof term for proposition A
We presuppose that A is a proposition when we write this judgment. We will

also interpret M : A as “M is a program of type A”. These dual interpretations
of the same judgment is the core of the Curry-Howard isomorphism. We either
think of M as a term that represents the proof of A true, or we think of A as the
type of the program M . As we discuss each connective, we give both readings
of the rules to emphasize the analogy.

We intend that if M : A then A true. Conversely, if A true then M : A.
But we want something more: every deduction of M : A should correspond to a
deduction of A true with an identical structure and vice versa. In other words
we annotate the inference rules of natural deduction with proof terms. The
property above should then be obvious.

Conjunction. Constructively, we think of a proof of A ∧ B true as a pair of
proofs: one for A true and one for B true.

M : A N : B

〈M,N〉 : A ∧B
∧I

Draft of September 11, 2008

24 Proofs as Programs

The elimination rules correspond to the projections from a pair to its first
and second elements.

M : A ∧B

fstM : A
∧EL

M : A ∧B

sndM : B
∧ER

Hence conjunction A ∧B corresponds to the product type A×B.

Truth. Constructively, we think of a proof of > true as a unit element that
carries now information.

〈 〉 : >
>I

Hence > corresponds to the unit type 1 with one element. There is no elimina-
tion rule and hence no further proof term constructs for truth.

Implication. Constructively, we think of a proof of A⊃B true as a function
which transforms a proof of A true into a proof of B true.

In mathematics and many programming languages, we define a function f
of a variable x by writing f(x) = . . . where the right-hand side “. . .” depends on
x. For example, we might write f(x) = x2 + x− 1. In functional programming,
we can instead write f = λx. x2 + x− 1, that is, we explicitly form a functional
object by λ-abstraction of a variable (x, in the example).

We now use the notation of λ-abstraction to annotate the rule of implication
introduction with proof terms. In the official syntax, we label the abstraction
with a proposition (writing λu:A) in order to specify the domain of a function
unambiguously. In practice we will often omit the label to make expressions
shorter—usually (but not always!) it can be determined from the context.

u : A
u

...
M : B

λu:A. M : A⊃B
⊃Iu

The hypothesis label u acts as a variable, and any use of the hypothesis labeled
u in the proof of B corresponds to an occurrence of u in M .

As a concrete example, consider the (trivial) proof of A⊃A true:

A true
u

A⊃A true
⊃Iu

If we annotate the deduction with proof terms, we obtain

u : A
u

(λu:A. u) : A⊃A
⊃Iu

Draft of September 11, 2008

3.1 Propositions as Types 25

So our proof corresponds to the identity function id at type A which simply
returns its argument. It can be defined with id(u) = u or id = (λu:A. u).

The rule for implication elimination corresponds to function application.
Following the convention in functional programming, we write M N for the
application of the function M to argument N , rather than the more verbose
M(N).

M : A⊃B N : A

M N : B
⊃E

What is the meaning of A⊃B as a type? From the discussion above it should
be clear that it can be interpreted as a function type A→B. The introduction
and elimination rules for implication can also be viewed as formation rules for
functional abstraction λu:A. M and application M N .

Note that we obtain the usual introduction and elimination rules for impli-
cation if we erase the proof terms. This will continue to be true for all rules
in the remainder of this section and is immediate evidence for the soundness of
the proof term calculus, that is, if M : A then A true.

As a second example we consider a proof of (A ∧B)⊃(B ∧A) true.

A ∧B true
u

B true
∧ER

A ∧B true
u

A true
∧EL

B ∧A true
∧I

(A ∧B)⊃(B ∧A) true
⊃Iu

When we annotate this derivation with proof terms, we obtain a function which
takes a pair 〈M,N〉 and returns the reverse pair 〈N,M〉.

u : A ∧B
u

sndu : B
∧ER

u : A ∧B
u

fstu : A
∧EL

〈sndu, fstu〉 : B ∧A
∧I

(λu. 〈sndu, fstu〉) : (A ∧B)⊃(B ∧A)
⊃Iu

Disjunction. Constructively, we think of a proof of A ∨ B true as either a
proof of A true or B true. Disjunction therefore corresponds to a disjoint sum
type A +B, and the two introduction rules correspond to the left and right
injection into a sum type.

M : A

inlB M : A ∨B
∨IL

N : B

inrA N : A ∨B
∨IR

In the official syntax, we have annotated the injections inl and inr with propo-
sitions B and A, again so that a (valid) proof term has an unambiguous type. In
writing actual programs we usually omit this annotation. The elimination rule

Draft of September 11, 2008

26 Proofs as Programs

corresponds to a case construct which discriminates between a left and right
injection into a sum types.

M : A ∨B

u : A
u

...
N : C

w : B
w

...
O : C

caseM of inlu ⇒ N | inrw ⇒ O : C
∨Eu,w

Recall that the hypothesis labeled u is available only in the proof of the second
premise and the hypothesis labeled w only in the proof of the third premise.
This means that the scope of the variable u is N , while the scope of the variable
w is O.

Falsehood. There is no introduction rule for falsehood (⊥). We can therefore
view it as the empty type 0. The corresponding elimination rule allows a term of
⊥ to stand for an expression of any type when wrapped with abort. However,
there is no computation rule for it, which means during computation of a valid
program we will never try to evaluate a term of the form abortM .

M : ⊥

abortC M : C
⊥E

As before, the annotation C which disambiguates the type of abortM will often
be omitted.

This completes our assignment of proof terms to the logical inference rules.
Now we can interpret the interaction laws we introduced early as programming
exercises. Consider the following distributivity law:

(L11a) (A⊃(B ∧ C))⊃(A⊃B) ∧ (A⊃C) true

Interpreted constructively, this assignment can be read as:

Write a function which, when given a function from A to pairs of
type B ∧C, returns two functions: one which maps A to B and one
which maps A to C.

This is satisfied by the following function:

λu. 〈(λw. fst (u w)), (λv. snd (u v))〉

Draft of September 11, 2008

3.1 Propositions as Types 27

The following deduction provides the evidence:

u : A⊃(B ∧ C)
u

w : A
w

u w : B ∧ C
⊃E

fst (u w) : B
∧EL

λw. fst (u w) : A⊃B
⊃Iw

u : A⊃(B ∧ C)
u

v : A
v

u v : B ∧ C
⊃E

snd (u v) : C
∧ER

λv. snd (u v) : A⊃C
⊃Iv

〈(λw. fst (u w)), (λv. snd (u v))〉 : (A⊃B) ∧ (A⊃C)
∧I

λu. 〈(λw. fst (u w)), (λv. snd (u v))〉 : (A⊃(B ∧ C))⊃((A⊃B) ∧ (A⊃C))
⊃Iu

Programs in constructive propositional logic are somewhat uninteresting in
that they do not manipulate basic data types such as natural numbers, integers,
lists, trees, etc. We introduce such data types in Section ??, following the same
method we have used in the development of logic.

To close this section we recall the guiding principles behind the assignment
of proof terms to deductions.

1. For every deduction of A true there is a proof term M and deduction of
M : A.

2. For every deduction of M : A there is a deduction of A true

3. The correspondence between proof terms M and deductions of A true is
a bijection.

Draft of September 11, 2008

28 Proofs as Programs

Draft of September 11, 2008

3.2 Reduction 29

3.2 Reduction

In the preceding section, we have introduced the assignment of proof terms to
natural deductions. If proofs are programs then we need to explain how proofs
are to be executed, and which results may be returned by a computation.

We explain the operational interpretation of proofs in two steps. In the
first step we introduce a judgment of reduction M =⇒R M ′, read “M reduces
to M ′”. A computation then proceeds by a sequence of reductions M =⇒R

M1 =⇒R M2 . . ., according to a fixed strategy, until we reach a value which is
the result of the computation. In this section we cover reduction; we may return
to reduction strategies in a later lecture.

As in the development of propositional logic, we discuss each of the con-
nectives separately, taking care to make sure the explanations are independent.
This means we can consider various sublanguages and we can later extend our
logic or programming language without invalidating the results from this sec-
tion. Furthermore, it greatly simplifies the analysis of properties of the reduction
rules.

In general, we think of the proof terms corresponding to the introduction
rules as the constructors and the proof terms corresponding to the elimination
rules as the destructors.

Conjunction. The constructor forms a pair, while the destructors are the
left and right projections. The reduction rules prescribe the actions of the
projections.

fst 〈M,N〉 =⇒R M
snd 〈M,N〉 =⇒R N

Truth. The constructor just forms the unit element, 〈 〉. Since there is no
destructor, there is no reduction rule.

Implication. The constructor forms a function by λ-abstraction, while the
destructor applies the function to an argument. In general, the application of
a function to an argument is computed by substitution. As a simple example
from mathematics, consider the following equivalent definitions

f(x) = x2 + x− 1 f = λx. x2 + x− 1

and the computation

f(3) = (λx. x2 + x− 1)(3) = [3/x](x2 + x− 1) = 32 + 3− 1 = 11

In the second step, we substitute 3 for occurrences of x in x2 + x− 1, the body
of the λ-expression. We write [3/x](x2 + x− 1) = 32 + 3− 1.

In general, the notation for the substitution of N for occurrences of u in M
is [N/u]M . We therefore write the reduction rule as

(λu:A. M) N =⇒R [N/u]M

Draft of September 11, 2008

30 Proofs as Programs

We have to be somewhat careful so that substitution behaves correctly. In
particular, no variable in N should be bound in M in order to avoid conflict.
We can always achieve this by renaming bound variables—an operation which
clearly does not change the meaning of a proof term.

Disjunction. The constructors inject into a sum types; the destructor distin-
guishes cases. We need to use substitution again.

case inlB M of inlu ⇒ N | inrw ⇒ O =⇒R [M/u]N
case inrA M of inlu ⇒ N | inrw ⇒ O =⇒R [M/w]O

Falsehood. Since there is no constructor for the empty type there is no re-
duction rule for falsehood.

This concludes the definition of the reduction judgment. In the next section
we will prove some of its properties.

As an example we consider a simple program for the composition of two
functions. It takes a pair of two functions, one from A to B and one from B to
C and returns their composition which maps A directly to C.

comp : ((A⊃B) ∧ (B⊃C))⊃(A⊃C)

We transform the following implicit definition into our notation step-by-step:

comp 〈f, g〉 (w) = g(f(w))
comp 〈f, g〉 = λw. g(f(w))

compu = λw. (sndu) ((fstu)(w))
comp = λu. λw. (sndu) ((fstu) w)

The final definition represents a correct proof term, as witnessed by the following
deduction.

u : (A⊃B) ∧ (B⊃C)
u

sndu : B⊃C
∧ER

u : (A⊃B) ∧ (B⊃C)
u

fstu : A⊃B
∧EL

w : A
w

(fstu) w : B
⊃E

(sndu) ((fstu) w) : C
⊃E

λw. (sndu) ((fstu) w) : A⊃C
⊃Iw

(λu. λw. (sndu) ((fstu) w)) : ((A⊃B) ∧ (B⊃C))⊃(A⊃C)
⊃Iu

We now verify that the composition of two identity functions reduces again to
the identity function. First, we verify the typing of this application.

(λu. λw. (sndu) ((fstu) w)) 〈(λx. x), (λy. y)〉 : A⊃A

Draft of September 11, 2008

3.3 Expansion 31

Now we show a possible sequence of reduction steps. This is by no means
uniquely determined.

(λu. λw. (sndu) ((fstu) w)) 〈(λx. x), (λy. y)〉
=⇒R λw. (snd 〈(λx. x), (λy. y)〉) ((fst 〈(λx. x), (λy. y)〉) w)
=⇒R λw. (λy. y) ((fst 〈(λx. x), (λy. y)〉) w)
=⇒R λw. (λy. y) ((λx. x) w)
=⇒R λw. (λy. y) w
=⇒R λw. w

We see that we may need to apply reduction steps to subterms in order to reduce
a proof term to a form in which it can no longer be reduced. We postpone a
more detailed discussion of this until we discuss the operational semantics in
full.

3.3 Expansion

We saw in the previous section that proof reductions that witness local sound-
ness form the basis for the computational interpretation of proofs. Less relevant
to computation are the local expansions. What they tell us, for example, is
that if we need to return a pair from a function, we can always construct it as
〈M,N〉 for some M and N . Another example would be that whenever we need
to return a function, we can always construct it as λu. M for some M .

We can derive what the local expansion must be by annotating the deduction
from Section 2.5 with proof terms. We leave this as an exercise to the reader.
The left-hand side of each expansion has the form M : A, where M is an
arbitrary term and A is a logical connective or constant applied to arbitrary
propositions. On the right hand side we have to apply a destructor to M and
then reconstruct a term of the original type. The resulting rules can be found
in Figure 3.3.

3.4 Summary of Proof Terms

Judgments.
M : A M is a proof term for proposition A, see Figure 3.1
M =⇒R M ′ M reduces to M ′, see Figure 3.2
M : A =⇒E M ′ M expands to M ′, see Figure 3.3

Concrete Syntax. The concrete syntax for proof terms used in the mechan-
ical proof checker has some minor differences to the form we presented above.

Draft of September 11, 2008

32 Proofs as Programs

Constructors Destructors

M : A N : B

〈M,N〉 : A ∧B
∧I

M : A ∧B

fstM : A
∧EL

M : A ∧B

sndM : B
∧ER

〈 〉 : >
>I

no destructor for >

u : A
u

...
M : B

λu:A. M : A⊃B
⊃Iu

M : A⊃B N : A

M N : B
⊃E

M : A

inlB M : A ∨B
∨IL

N : B

inrA N : A ∨B
∨IR

M : A ∨B

u : A
u

...
N : C

w : B
w

...
O : C

caseM of inlu ⇒ N | inrw ⇒ O : C
∨Eu,w

no constructor for ⊥

M : ⊥

abortC M : C
⊥E

Figure 3.1: Proof term assignment for natural deduction

Draft of September 11, 2008

3.4 Summary of Proof Terms 33

fst 〈M,N〉 =⇒R M
snd 〈M,N〉 =⇒R N

no reduction for 〈 〉
(λu:A. M) N =⇒R [N/u]M

case inlB M of inlu ⇒ N | inrw ⇒ O =⇒R [M/u]N
case inrA M of inlu ⇒ N | inrw ⇒ O =⇒R [M/w]O

no reduction for abort

Figure 3.2: Proof term reductions

M : A ∧B =⇒E 〈fstM, sndM〉
M : A⊃B =⇒E λu:A. M u for u not free in M
M : > =⇒E 〈 〉
M : A ∨B =⇒E caseM of inlu ⇒ inlB u | inrw ⇒ inrA w

M : ⊥ =⇒E abort⊥ M

Figure 3.3: Proof term expansions

u u Variable

〈M,N〉 (M,N) Pair

fstM fst M First projection

sndM snd M Second projection

〈 〉 () Unit element

λu:A. M fn u => M Abstraction

M N M N Application

inlB M inl M Left injection

inrA N inr N Right injection

case M

of inlu ⇒ N

| inrw ⇒ O

case M

of inl u => N

| inr w => O

end

Case analysis

abortC M abort M Abort

Pairs and unit element are delimited by parentheses ‘(’ and ‘)’ instead of
angle brackets 〈 and 〉. The case constructs requires an end token to mark the
end of the a sequence of cases.

Type annotations are generally omitted, but a whole term can explicitly be

Draft of September 11, 2008

34 Proofs as Programs

given a type. The proof checker (which here is also a type checker) infers the
missing information. Occasionally, an explicit type ascription M : A is necessary
as a hint to the type checker.

For rules of operator precedence, the reader is referred to the on-line doc-
umentation of the proof checking software available with the course material.
Generally, parentheses can be used to disambiguate or override the standard
rules.

As an example, we show the proof term implementing function composition.

term comp : (A => B) & (B => C) => (A => C) =
fn u => fn x => (snd u) ((fst u) x);

We also allow annotated deductions, where each line is annotated with a
proof term. This is a direct transcription of deduction for judgments of the
form M : A. As an example, we show the proof that A∨B⊃B ∨A, first in the
pure form.

proof orcomm : A | B => B | A =
begin
[A | B;
[A;
B | A];

[B;
B | A];

B | A];
A | B => B | A
end;

Now we systematically annotate each line and obtain

annotated proof orcomm : A | B => B | A =
begin
[u : A | B;
[v : A;
inr v : B | A];

[w : B;
inl w : B | A];

case u
of inl v => inr v
| inr w => inl w

end : B | A];
fn u => case u

of inl v => inr v
| inr w => inl w

end : A | B => B | A
end;

Draft of September 11, 2008

3.5 Properties of Proof Terms 35

3.5 Properties of Proof Terms

In this section we analyze and verify various properties of proof terms. Rather
than concentrate on reasoning within the logical calculi we introduced, we now
want to reason about them. The techniques are very similar—they echo the
ones we have introduced so far in natural deduction. This should not be sur-
prising. After all, natural deduction was introduced to model mathematical
reasoning, and we now engage in some mathematical reasoning about proof
terms, propositions, and deductions. We refer to this as metalogical reasoning.

First, we need some more formal definitions for certain operations on proof
terms, to be used in our meta-logical analysis. One rather intuitive property of
is that variable names should not matter. For example, the identity function at
type A can be written as λu:A. u or λw:A. w or λu′:A. u′, etc. They all denote
the same function and the same proof. We therefore identify terms which differ
only in the names of variables (here called u) bound in λu:A. M , inlu ⇒ M
or inru ⇒ O. But there are pitfalls with this convention: variables have to be
renamed consistently so that every variable refers to the same binder before and
after the renaming. For example (omitting type labels for brevity):

λu. u = λw. w
λu. λw. u = λu′. λw. u′

λu. λw. u 6= λu. λw. w
λu. λw. u 6= λw. λw. w
λu. λw. w = λw. λw. w

The convention to identify terms which differ only in the naming of their
bound variables goes back to the first papers on the λ-calculus by Church and
Rosser [CR36], is called the “variable name convention” and is pervasive in the
literature on programming languages and λ-calculi. The term λ-calculus typi-
cally refers to a pure calculus of functions formed with λ-abstraction. Our proof
term calculus is called a typed λ-calculus because of the presence of propositions
(which an be viewed as types).

Following the variable name convention, we may silently rename when con-
venient. A particular instance where this is helpful is substitution. Consider

[u/w](λu. w u)

that is, we substitute u for w in λu. w u. Note that u is a variable visible on
the outside, but also bound by λu. By the variable name convention we have

[u/w](λu. w u) = [u/w](λu′. w u′) = λu′. u u′

which is correct. But we cannot substitute without renaming, since

[u/w](λu. w u) 6= λu. u u

In fact, the right hand side below is invalid, while the left-hand side makes
perfect sense. We say that u is captured by the binder λu. If we assume a
hypothesis u:>⊃A then

[u/w](λu:>. w u) : A

Draft of September 11, 2008

36 Proofs as Programs

but
λu:>. u u

is not well-typed since the first occurrence of u would have to be of type >⊃A
but instead has type >.

So when we carry out substitution [M/u]N we need to make sure that no
variable in M is captured by a binder in N , leading to an incorrect result.
Fortunately we can always achieve that by renaming some bound variables in
N if necessary. We could now write down a formal definition of substitution,
based on the cases for the term we are substituting into. However, we hope that
the notion is sufficiently clear that this is not necessary.

Instead we revisit the substitution principle for hypothetical judgments. It
states that if we have a hypothetical proof of C true from A true and we have a
proof of A true, we can substitute the proof of A true for uses of the hypothesis
A true and obtain a (non-hypothetical) proof of A true. In order to state this
more precisely in the presence of several hypotheses, we recall that

A1 true . . . An true
...

C true

can be written as
A1 true, . . . , An true︸ ︷︷ ︸

∆

` C true

Generally we abbreviate several hypotheses by ∆. We then have the follow-
ing properties, evident from the very definition of hypothetical judgments and
hypothetical proofs

Weakening: If ∆ ` C true then ∆,∆′ ` C true.

Substitution: If ∆, A true,∆′ ` C true and ∆ ` A true then ∆,∆′ ` C true.

As indicated above, weakening is realized by adjoining unused hypotheses, sub-
stitutions is realized by substitution of proofs for hypotheses.

For the proof term judgment, M : A, we use the same notation and write

u1:A1 . . . un:An

...
N : C

as
u1:A1, . . . , un:An︸ ︷︷ ︸

Γ

` N : C

We use Γ to refer to collections of hypotheses ui:Ai. In the deduction of N : C,
each ui stands for an unknown proof term for Ai, simply assumed to exist. If
we actually find a proof Mi:Ai we can eliminate this assumption, again by sub-
stitution. However, this time, the substitution has to perform two operations:

Draft of September 11, 2008

3.5 Properties of Proof Terms 37

we have to substitute Mi for ui (the unknown proof term variable), and the
deduction of Mi : Ai for uses of the hypothesis ui:Ai. More precisely, we have
the following two properties:

Weakening: If Γ,Γ′ ` N : C then Γ, u:A,Γ′ ` N : C.

Substitution: If Γ, u:A,Γ′ ` N : C and Γ ` M : A then Γ,Γ′ ` [M/u]N : C.

Now we are in a position to state and prove our second meta-theorem, that
is, a theorem about the logic under consideration. The theorem is called subject
reduction because is concerns the subject M of the judgment M : A. It states
that reduction preserves the type of an object. We make the hypotheses explicit
as we have done in the explanations above.

Theorem 3.1 (Subject Reduction)
If Γ ` M : A and M =⇒R M ′ then Γ ` M ′ : A.

Proof: We consider each case in the definition of M =⇒R M ′ in turn and show
that the property holds. This is simply an instance of proof by cases.

Case: fst 〈M1,M2〉 =⇒R M1. By assumption we also know that

Γ ` fst 〈M1,M2〉 : A.

We need to show that Γ ` M1 : A.

Now we inspect all inference rules for the judgment M : A and we see that
there is only one way how the judgment above could have been inferred:
by ∧EL from

Γ ` 〈M1,M2〉 : A ∧A2

for some A2. This step is called inversion, since we infer the premises
from the conclusion of the rule. But we have to be extremely careful to
inspect all possibilities for derivations so that we do not forget any cases.

Next, we apply inversion again: the judgment above could only have been
inferred by ∧I from the two premises

Γ ` M1 : A

and
Γ ` M2 : A2

But the first of these is what we had to prove in this case and we are done.

Case: snd 〈M1,M2〉 =⇒R M2. This is symmetric to the previous case. We
write it an abbreviated form.

Γ ` snd 〈M1,M2〉 : A Assumption
Γ ` 〈M1,M2〉 : A1 ∧A for some A1 By inversion
Γ ` M1 : A1 and
Γ ` M2 : A By inversion

Draft of September 11, 2008

38 Proofs as Programs

Here the last judgment is what we were trying to prove.

Case: There is no reduction for > since there is no elimination rule and hence
no destructor.

Case: (λu:A1. M2) M1 =⇒R [M1/u]M2. By assumption we also know that

Γ ` (λu:A1. M2) M1 : A.

We need to show that Γ ` [M1/u]M2 : A.

Since there is only one inference rule for function application, namely
implication elimination (⊃E), we can apply inversion and find that

Γ ` (λu:A1. M2) : A′
1⊃A

and
Γ ` M1 : A′

1

for some A′
1. Now we repeat inversion on the first of these and conclude

that
Γ, u:A1 ` M2 : A

and, moreover, that A1 = A′
1. Hence

Γ ` M1 : A1

Now we can apply the substitution property to these to judgments to
conclude

Γ ` [M1/u]M2 : A

which is what we needed to show.

Case: (case inlC M1 of inlu ⇒ N | inrw ⇒ O) =⇒R [M1/u]N . By assump-
tion we also know that

Γ ` (case inlC M1 of inlu ⇒ N | inrw ⇒ O) : A

Again we apply inversion and obtain three judgments

Γ ` inlC M1 : B′ ∨ C ′

Γ, u:B′ ` N : A
Γ, w:C ′ ` O : A

for some B′ and C ′.

Again by inversion on the first of these, we find

Γ ` M1 : B′

and also C ′ = C. Hence we can apply the substitution property to get

Γ ` [M1/u]N : A

which is what we needed to show.

Draft of September 11, 2008

3.5 Properties of Proof Terms 39

Case: (case inrB M1 of inlu ⇒ N | inrw ⇒ O) =⇒R [M1/u]N . This is
symmetric to the previous case and left as an exercise.

Case: There is no introduction rule for ⊥ and hence no reduction rule.

2

The important techniques introduced in the proof above are proof by cases
and inversion. In a proof by cases we simply consider all possibilities for why a
judgment could be evident and show the property we want to establish in each
case. Inversion is very similar: from the shape of the judgment we see it could
have been inferred only in one possible way, so we know the premises of this rule
must also be evident. We see that these are just two slightly different forms of
the same kind of reasoning.

If we look back at our early example computation, we saw that the reduc-
tion step does not always take place at the top level, but that the redex may
be embedded in the term. In order to allow this, we need to introduce some
additional ways to establish that M =⇒R M ′ when the actual reduction takes
place inside M . This is accomplished by so-called congruence rules.

Draft of September 11, 2008

40 Proofs as Programs

Draft of September 11, 2008

Bibliography

[CR36] Alonzo Church and J.B. Rosser. Some properties of conversion. Trans-
actions of the American Mathematical Society, 39(3):472–482, May
1936.

[Dum91] Michael Dummett. The Logical Basis of Metaphysics. Harvard Uni-
versity Press, Cambridge, Massachusetts, 1991. The William James
Lectures, 1976.

[Gen35] Gerhard Gentzen. Untersuchungen über das logische Schließen. Math-
ematische Zeitschrift, 39:176–210, 405–431, 1935. English translation
in M. E. Szabo, editor, The Collected Papers of Gerhard Gentzen,
pages 68–131, North-Holland, 1969.

[How80] W. A. Howard. The formulae-as-types notion of construction. In
J. P. Seldin and J. R. Hindley, editors, To H. B. Curry: Essays on
Combinatory Logic, Lambda Calculus and Formalism, pages 479–490.
Academic Press, 1980. Hitherto unpublished note of 1969, rearranged,
corrected, and annotated by Howard.

[ML80] Per Martin-Löf. Constructive mathematics and computer program-
ming. In Logic, Methodology and Philosophy of Science VI, pages
153–175. North-Holland, 1980.

[ML96] Per Martin-Löf. On the meanings of the logical constants and the
justifications of the logical laws. Nordic Journal of Philosophical Logic,
1(1):11–60, 1996.

[Pra65] Dag Prawitz. Natural Deduction. Almquist & Wiksell, Stockholm,
1965.

Draft of September 11, 2008

Chapter 4

First-Order Logic and Type
Theory

In the first chapter we developed the logic of pure propositions without reference
to data types such as natural numbers. In the second chapter we explained the
computational interpretation of proofs. Later in this chapter we will introduce
data types and ways to compute with them using primitive recursion. Together,
these will allows us to reason about data and programs manipulating data. In
other words, we will be able to prove our programs correct with respect to
their expected behavior on data. The principal means for will be induction,
introduced towards the end of this chapter. There are several ways to employ
the machinery we will develop. For example, we can execute proofs directly,
using their interpretation as programs. Or we can extract functions, ignoring
some proof objects that have are irrelevant with respect to the data our programs
return. That is, we can contract proofs to programs. Or we can simply write
our programs and use the logical machinery we have developed to prove them
correct.

In practice, there are situations in which each of them is appropriate. How-
ever, we note that in practice we rarely formally prove our programs to be
correct. This is because there is no mechanical procedure to establish if a given
programs satisfies its specification. Moreover, we often have to deal with input
or output, with mutable state or concurrency, or with complex systems where
the specification itself could be as difficult to develop as the implementation.
Instead, we typically convince ourselves that central parts of our program and
the critical algorithms are correct. Even if proofs are never formalized, this
chapter will help you in reasoning about programs and their correctness.

There is another way in which the material of this chapter is directly relevant
to computing practice. In the absence of practical methods for verifying full
correctness, we can be less ambitious by limiting ourselves to program properties
that can indeed be mechanically verified. The most pervasive application of
this idea in programming is the idea of type systems. By checking the type

Draft of September 18, 2008

42 First-Order Logic and Type Theory

correctness of a program we fall far short of verifying it, but we establish a kind
of consistency statement. Since languages satisfy (or are supposed to satisfy)
type preservation, we know that, if a result is returned, it is a value of the right
type. Moreover, during the execution of a program (modeled here by reduction),
all intermediate states are well-typed which prevents certain absurd situations,
such as adding a natural number to a function. This is often summarized in the
slogan that “well-typed programs cannot go wrong”. Well-typed programs are
safe in this respect. In terms of machine language, assuming a correct compiler,
this guards against irrecoverable faults such as jumping to an address that does
not contain valid code, or attempting to write to inaccessible memory location.

There is some room for exploring the continuum between types, as present
in current programming languages, and full specifications, the domain of type
theory. By presenting these elements in a unified framework, we have the basis
for such an exploration.

We begin this chapter with a discussion of the universal and existential
quantifiers, followed by a number of examples of inductive reasoning with data
types.

4.1 Quantification

In this section, we introduce universal and existential quantification. As usual,
we follow the method of using introduction and elimination rules to explain the
meaning of the connectives. An important aspect of the treatment of quantifiers
is that it should be completely independent of the domain of quantification. We
want to capture what is true of all quantifiers, rather than those applying to
natural numbers or integers or rationals or lists or other type of data. We will
therefore quantify over objects of an unspecified (arbitrary) type τ . Whatever
we derive, will of course also hold for specific domain (for example, τ = nat).
The basic judgment connecting objects t to types τ is t : τ . We also have
a judgment that τ is a valid type, written as τ type. We will refer to these
judgments here, but not define any specific instances until later in the chapter
when discussing data types.

First, universal quantification, written as ∀x:τ. A(x). Here x is a bound
variable and can therefore be renamed as discussed in the preceding chapter.
When we write A(x) we mean an arbitrary proposition which may depend on
x. We will als say that A is predicate on elements of type τ .

For the quantification to be well-formed, the body must be well-formed under
the assumption that a is an object of type τ , and τ must be a valid type, two
new judgments we consider in this chapter.

τ type

a : τ
...

A(a) prop

∀x:τ. A(x) prop
∀F a

Draft of September 18, 2008

4.1 Quantification 43

For the introduction rule we require that A(a) be true for arbitrary a. In
other words, the premise contains a parametric judgment, explained in more
detail below.

a : τ
...

A(a) true

∀x:τ. A(x) true
∀Ia

It is important that a be a new parameter, not used outside of its scope, which
is the derivation between the new hypothesis a : τ and the conclusion A(a) true.
In particular, it may not occur in ∀x:τ. A(x).

If we think of this as the defining property of universal quantification, then
a verification of ∀x:τ. A(x) describes a construction by which an arbitrary t : τ
can be transformed into a proof of A(t) true.

∀x:τ. A(x) true t : τ

A(t) true
∀E

We must verify that t : τ so that A(t) is a well-formed proposition.
The local reduction uses the following substitution principle for parametric

judgments:

If

a : τ
D

J(a) and
E

t : τ then

E
t : τ

[t/a]D
J(t)

The right hand side is constructed by systematically substituting t for a in D
and the judgments occurring in it. As usual, this substitution must be capture
avoiding to be meaningful. It is the substitution into the judgments themselves
which distinguishes substitution for parameters from substitution for hypothe-
ses.

The local reduction for universal quantification then exploits this substitu-
tion principle.

a : τ
D

A(a) true

∀x:τ. A(x) true
∀Ia E

t : τ

A(t) true
∀E

=⇒R

E
t : τ

[t/a]D
A(t) true

The local expansion introduces a parameter which we can use the eliminate

Draft of September 18, 2008

44 First-Order Logic and Type Theory

the universal quantifier.

D
∀x:τ. A(x) true =⇒E

D
∀x:τ. A(x) true a : τ

A(a) true
∀E

∀x:τ. A(x) true
∀Ia

As a simple example, consider the proof that universal quantifiers distribute
over conjunction.

(∀x:τ. A(x)) ∧ (∀x:τ. B(x)) true
u

∀x:τ. A(x) true
∧EL

a : τ

A(a) true
∀E

∀x:τ. A(x) true
∀Ia

(∀x:τ. A(x)) ∧ (∀x:τ. B(x)) true
u

∀x:τ. B(x) true
∧ER

b : τ

B(b) true
∀E

∀x:τ. B(x) true
∀Ib

(∀x:τ. A(x)) ∧ (∀x:τ. B(x)) true
∧I

(∀x:τ. A(x) ∧B(x))⊃(∀x:τ. A(x)) ∧ (∀x:τ. B(x)) true
⊃Iu

The existential quantifier is more difficult to specify, although the introduc-
tion rule seems innocuous enough.

t : τ A(t) true

∃x:τ. A(x) true
∃I

The elimination rules creates some difficulties. We cannot write

∃x:τ. A(x) true

A(t) true
∃E?

because we do not know for which t is is the case that A(t) holds. It is easy
to see that local soundness would fail with this rule, because we would prove
∃x:τ. A(x) with one witness t and then eliminate the quantifier using another
object t′.

The best we can do is to assume that A(a) is true for some new parameter a.
The scope of this assumption is limited to the proof of some conclusion C true
which does not mention a (which must be new).

∃x:τ. A(x) true

a : τ A(a) true
u

...
C true

C true
∃Ea,u

Draft of September 18, 2008

4.1 Quantification 45

Here, the scope of the hypotheses a and u is the deduction on the right, indicated
by the vertical dots. In particular, C may not depend on a. We use this crucially
in the local reduction.

D
t : τ

E
A(t) true

∃x:τ. A(x) true
∃I

a : τ A(a) true
u

F
C true

C true
∃Ea,u

=⇒R

D
t : τ

E
A(t) true

u

[t/a]F
C true

The reduction requires two substitutions, one for a parameter a and one for a
hypothesis u.

The local expansion is patterned after the disjunction.

D
∃x:τ. A(x) true =⇒E

D
∃x:τ. A(x) true

a : τ A(a) true
u

∃x:τ. A(x) true
∃I

∃x:τ. A(x) true
∃Ea,u

As an example of quantifiers we show the equivalence of ∀x:τ. A(x)⊃C and
(∃x:τ. A(x))⊃C, where C does not depend on x. Generally, in our propositions,
any possibly dependence on a bound variable is indicated by writing a general
predicate A(x1, . . . , xn). We do not make explicit when such propositions are
well-formed, although appropriate rules for explicit A could be given.

When looking at a proof, the static representation on the page is an inade-
quate image for the dynamics of proof construction. As we did earlier, we give
two examples where we show the various stages of proof construction.

...
((∃x:τ. A(x))⊃C)⊃∀x:τ. (A(x)⊃C) true

The first three steps can be taken without hesitation, because we can always ap-
ply implication and universal introduction from the bottom up without possibly
missing a proof.

(∃x:τ. A(x))⊃C true
u

a : τ A(a) true
w

...
C true

A(a)⊃C true
⊃Iw

∀x:τ. A(x)⊃C true
∀Ia

((∃x:τ. A(x))⊃C)⊃∀x:τ. (A(x)⊃C) true
⊃Iu

At this point the conclusion is atomic, so we must apply an elimination to an
assumption if we follow the strategy of introductions bottom-up and elimina-
tions top-down. The only possibility is implication elimination, since a : τ and

Draft of September 18, 2008

46 First-Order Logic and Type Theory

A(a) true are atomic. This gives us a new subgoal.

(∃x:τ. A(x))⊃C true
u

a : τ A(a) true
w

...
∃x:τ. A(x)

C true
⊃E

A(a)⊃C true
⊃Iw

∀x:τ. A(x)⊃C true
∀Ia

((∃x:τ. A(x))⊃C)⊃∀x:τ. (A(x)⊃C) true
⊃Iu

At this point it is easy to see how to complete the proof with an existential
introduction.

(∃x:τ. A(x))⊃C true
u

a : τ A(a) true
w

∃x:τ. A(x)
∃I

C true
⊃E

A(a)⊃C true
⊃Iw

∀x:τ. A(x)⊃C true
∀Ia

((∃x:τ. A(x))⊃C)⊃∀x:τ. (A(x)⊃C) true
⊃Iu

We now consider the reverse implication.

...
(∀x:τ. (A(x)⊃C))⊃((∃x:τ. A(x))⊃C) true

From the initial goal, we can blindly carry out two implication introductions,
bottom-up, which yields the following situation.

∃x:τ. A(x) true
w

∀x:τ. A(x)⊃C true
u

...
C true

(∃x:τ. A(x))⊃C true
⊃Iw

(∀x:τ. (A(x)⊃C))⊃((∃x:τ. A(x))⊃C) true
⊃Iu

No we have two choices: existential elimination applied to w or universal elim-
ination applied to u. However, we have not introduced any terms, so only the

Draft of September 18, 2008

4.1 Quantification 47

existential elimination can go forward.

∃x:τ. A(x) true
w

∀x:τ. A(x)⊃C true
u

a : τ A(a) true
v

...
C true

C true
∃Ea,v

(∃x:τ. A(x))⊃C true
⊃Iw

(∀x:τ. (A(x)⊃C))⊃((∃x:τ. A(x))⊃C) true
⊃Iu

At this point we need to apply another elimination rule to an assumption. We
don’t have much to work with, so we try universal elimination.

∃x:τ. A(x) true
w

∀x:τ. A(x)⊃C true
u

a : τ

A(a)⊃C true
∀E

A(a) true
v

...
C true

C true
∃Ea,v

(∃x:τ. A(x))⊃C true
⊃Iw

(∀x:τ. (A(x)⊃C))⊃((∃x:τ. A(x))⊃C) true
⊃Iu

Now we can fill the gap with an implication elimination.

∃x:τ. A(x) true
w

∀x:τ. A(x)⊃C true
u

a : τ

A(a)⊃C true
∀E

A(a) true
v

C true
⊃E

C true
∃Ea,v

(∃x:τ. A(x))⊃C true
⊃Iw

(∀x:τ. (A(x)⊃C))⊃((∃x:τ. A(x))⊃C) true
⊃Iu

In order to formalize the proof search strategy, we use the judgments A has
a verification (A ↑) and A may be used (A ↓) as we did in the propositional
case. Universal quantification is straightforward:

a : τ
...

A(a) ↑

∀x:τ. A(x) ↑
∀Ia

∀x:τ. A(x) ↓ t : τ

A(t) ↓
∀E

Draft of September 18, 2008

48 First-Order Logic and Type Theory

We do not assign a direction to the judgment for typing objects, t : τ .
Verifications for the existential elimination are patterned after the disjunc-

tion: we translate a usable ∃x:τ. A(x) into a usable A(a) with a limited scope,
both in the verification of some C.

t : τ A(t) ↑

∃x:τ. A(x) ↑
∃I

∃x:τ. A(x) ↓

a : τ A(a) ↓
u

...
C ↑

C ↑
∃Ea,u

As before, the fact that every true proposition has a verification is a kind
of global version of the local soundness and completeness properties. If we take
this for granted (since we do not prove it until later), then we can use this to
demonstrate that certain propositions are not true, parametrically.

For example, we show that (∃x:τ. A(x))⊃(∀x:τ. A(x)) is not true in general.
After the first two steps of constructing a verification, we arrive at

∃x:τ. A(x) ↓
u

a : τ

...
A(a) ↑

∀x:τ. A(x) ↑
∀Ia

(∃x:τ. A(x))⊃(∀x:τ. A(x)) ↑
⊃Iu

At this point we can only apply existential elimination, which leads to

∃x:τ. A(x) ↓
u

b : τ A(b) ↓
v

a : τ

...
A(a) ↑

A(a) ↑
∃Eb,v

∀x:τ. A(x) ↑
∀Ia

(∃x:τ. A(x))⊃(∀x:τ. A(x)) ↑
⊃Iu

We cannot close the gap, because a and b are different parameters. We can only
apply existential elimination to assumption u again. But this only creates c : τ
and A(c) ↓ for some new c, so have made no progress. No matter how often we
apply existential elimination, since the parameter introduced must be new, we
can never prove A(a).

Draft of September 18, 2008

4.2 Computational Meaning of Quantification 49

4.2 Computational Meaning of Quantification

Returning to one of our motivating examples, we saw that a constructive proof
of ∀x:nat. ∃y:nat. y > x ∧ prime(x) should be a function which, when given
a natural number x returns a natural number y which is greater than x and
prime. We therefore suspect the computational content of a proof of universal
quantifier over ∀x:τ. A(x) should be function from objects t of type τ to proofs
of A(t). The meaning of an existential quantifier ∃x:τ. A(x) should consist of a
withness term t of type τ and a proof that A(t) holds as specified.

Restating the above, the computational meaning of a proof of ∀x:τ. A(x) true
is a function which, when given an argument t of type τ , returns a proof of
A(t). If we don’t mind overloading notation, we obtain the following proof term
assignment. We use the notation with localized hypotheses, which can now
be either assumptions a:τ for object parameters a with their types or u:A for
propositional hypotheses A.

Γ, a:τ ` M : A(a)

Γ ` λa:τ. M : ∀x:τ. A(x)
∀Ia

Γ ` M : ∀x:τ. A(x) Γ ` t : τ

Γ ` M t : A(t)
∀E

The computation rule simply performs the required substitution, and expansion
generates an abstraction.

(λa:τ. M) t =⇒R [t/a]M
M : ∀x:τ. A =⇒E λa:τ. M a where a not free in M

At this point we may realize that a parameter a is nothing but a variable bound
in proofs. We would not lose anything if we named such variables x to unify
the notation.

The existential quantifier ∃x:τ. A(x) lies at the heart of constructive math-
ematics. This is because a proof of this should contain a witness t of type τ
such that A(t) true. The proof term assignment and computational contents
of these rules is not particularly difficult. The proof term for an existential
introduction is a pair consisting of the witness t and the proof that t satis-
fies the stated property. The elimination rule destructs the pair, making the
components accessible.

Γ ` t : τ Γ ` M : A(t)

Γ ` 〈t, M〉 : ∃x:τ. A(x)
∃I

Γ ` M : ∃x:τ. A(x) Γ, a:τ, u:A(a) ` N : C

Γ ` let 〈a, u〉 = M in N : C
∃E

Draft of September 18, 2008

50 First-Order Logic and Type Theory

The reduction rule is straightforward, substituting both the witness and the
proof term certifying its correctness.

let〈a, u〉 = 〈t, M〉 in N =⇒R [M/u] [t/a]N

As in the case of the propositional connectives, we now consider various
interactions between quantifiers and connectives to obtain an intuition regarding
their properties.

By annotating the earlier derivation that universal quantification distributes
over conjunction we can extract the following proof term for this judgment
(omitting some labels):

λu. 〈λa:τ. fst (u a), λb:τ. snd (u b)〉
: (∀x:τ. A(x) ∧B(x))⊃(∀x:τ. A(x)) ∧ (∀x:τ. B(x))

The opposite direction also holds, which means that we can freely move the
universal quantifier over conjunctions and vice versa. This judgment (and also
the proof above) are parametric in τ . Any instance by a concrete type for τ
will be an evident judgment. We show here only the proof term (again omitting
some labels):

λu. λa:τ. 〈(fst u) a, (snd u) a〉
: (∀x:τ. A(x)) ∧ (∀x:τ. B(x))⊃(∀x:τ. A(x) ∧B(x))

The proof that an existential can be pushed into the antecedent of an impli-
cation has the following proof term.

λu. λa:τ. λw. u 〈a,w〉
: ((∃x:τ. A(x))⊃C)⊃∀x:τ. (A(x)⊃C)

For the reverse implication we extract from the earlier proof:

λu. λw. let 〈a, v〉 = w in (u a) v
: (∀x:τ. (A(x)⊃C))⊃((∃x:τ. A(x))⊃C)

4.3 First-Order Logic

First-order logic, also called the predicate calculus, is concerned with the study
of propositions whose quantifiers range over a domain about which we make
no assumptions. In our case this means we allow only quantifiers of the form
∀x:τ. A(x) and ∃x:τ. A(x) that are parametric in a type τ . We assume only
that τ type, but no other property of τ . When we add particular types, such as
natural numbers nat, we say that we reason within specific theories. The theory
of natural numbers, for example, is called arithmetic. When we allow essentially
arbitrary propositions and types explained via introduction and elimination
constructs (including function types, product types, etc.) we say that we reason
in type theory. It is important that type theory is open-ended: we can always
add new propositions and new types and even new judgment forms, as long as

Draft of September 18, 2008

4.3 First-Order Logic 51

we can explain their meaning satisfactorily. On the other hand, first-order logic
is essentially closed: when we add new constructs, we work in other theories or
logics that include first-order logic, but we go beyond it in essential ways.

We have already seen some examples of reasoning in first-order logic in the
two previous sections. In this section we investigate the truth of various other
propositions in order to become comfortable with first-order reasoning. Just like
propositional logic, first-order logic has both classical and constructive variants.
We pursue the constructive or intuitionistic point of view. We can recover classi-
cal truth either via an interpretation such as Gödel’s translation, discussed later
in the class, or by adding the law of excluded middle. The practical difference at
the first-order level is the interpretation of the existential quantifier. In classical
logic, we can prove a proposition ∃x:τ. A(x) true by proving ¬∀x:τ. ¬A(x) true
instead. Such a proof may not yield the witness object t such that A(t) is sat-
isfied, which is required under the constructive interpretation of the existential
quantifier. But how is it possible to provide witnesses in pure logic, without any
assumptions about the domain of quantifiers? The answer is that assumptions
about the existence of objects will be introduced locally during the proof. But
we have to be careful to verify that the objects we use to witness existential
quantifiers or instantiate universal quantifiers are indeed assumed to exist and
are available at the right point in the derivation.

As a first concrete example, we investigate the interaction between negation
and quantification. We prove

(∃x:τ. ¬A(x))⊃¬∀x ∈ τ. A(x) true.

The subject of the judgment above is a proposition, assuming τ type and x:τ `
A(x) prop. Since all quantifiers range over the same type τ , we will omit the
type label from quantification in all propositions below. The reader should keep
in mind that this is merely a shorthand. Furthermore, we will not explicitly
state the assumption about the propositional or predicate parameters such as
A(x) and omit the judgment true for the sake of brevity.

∃x. ¬A(x)
u

¬A(c)
w

∀x. A(x)
v

c : τ

A(c)
∀E

⊥
⊃E

⊥
∃Ec,w

¬∀x. A(x)
⊃Iv

(∃x. ¬A(x))⊃¬∀x. A(x)
⊃Iu

The two-dimensional notation for derivations becomes difficult to manage for
large proofs, so we extend the linear notation used in the Tutch proof checker.
We use the following concrete syntax.

∀x:τ. A(x) !x:t. A(x)
∃x:τ. A(x) ?x:t. A(x)
c : τ c : t

Draft of September 18, 2008

52 First-Order Logic and Type Theory

The quantifiers ∀ and ∃ act like a prefix operator with minimal binding
strength, so that

∀x:τ. A(x)⊃B

is the same as
∀x:τ. (A(x)⊃B).

One complication introduced by existential quantification is that the elimination
rule introduces two new assumptions, c : τ and A(c) true. In order to distinguish
between inferred and assumed judgments, new assumptions are separated by
commas and terminated by semicolon. Under these conventions, the four rules
for quantification take the following form:

Introduction Elimination

c : t; ?x:t. A(x);
A(c); [c : t, A(c);
?x:t. A(x); . . . ;

B];
B;

[c : t; !x:t. A(x);
. . . ; c : t;
A(c)]; A(c);
!x:t. A(x)

We use c as a new parameter to distinguish parameters more clearly from
bound variables. Their confusion is a common source of error in first-order
reasoning. And we have the usual assumption that the name chosen for c must
be new (that is, may not occur in A(x) or B) in the existential elimination and
universal introduction rules.

Below we restate the proof from above in the linear notation.

[?x:t. ~A(x);
[!x:t. A(x);
[c : t, ~A(c);
A(c);
F];

F];
~!x:t. A(x)];

(?x:t. ~A(x)) => ~!x:t. A(x);

The opposite implication does not hold: even if we know that it is impossible
that A(x) is true for every x, this does not necessarily provide us with enough
information to obtain a witness for ∃x. A(x).

Now we return to showing that (¬∀x. A(x))⊃∃x. ¬A(x) true is not deriv-
able. We search for a normal proof, which means the first step in the bottom-up

Draft of September 18, 2008

4.3 First-Order Logic 53

construction is forced and we are in the state

¬∀x. A(x) ↓
u

...
∃x. ¬A(x) ↑

(¬∀x. A(x))⊃∃x. ¬A(x) ↑
⊃Iu

At this point it is impossible to apply the existential introduction rule, because
no witness object of type τ is available. So we can only apply the implication
elimination rule, which leads us to the following situation.

¬∀x. A(x) ↓
u

¬∀x. A(x) ↓
u

...
∀x. A(x) ↑

⊥ ↓
⊃E

∃x. ¬A(x) ↑
⊥E

(¬∀x. A(x))⊃∃x. ¬A(x) ↑
⊃Iu

Now we can either repeat the negation elimination (which leads nowhere), or
use universal introduction.

¬∀x. A(x) ↓
u

¬∀x. A(x) ↓
u

c : τ

...
A(c) ↑

∀x. A(x) ↑
∀Ic

⊥ ↓
⊃E

∃x. ¬A(x) ↑
⊥E

(¬∀x. A(x))⊃∃x. ¬A(x) ↑
⊃Iu

The only applicable rule for constructing normal deductions now is again the
implication elimination rule, applied to the assumption labeled u. This leads to
the identical situation, except that we have an additional assumption d : τ and
try to prove A(d) ↑. Clearly, we have made no progress. Therefore the given
proposition has no normal proof and hence, by the completeness of normal
proofs, no proof.

As a second example, we see that (∀x. A(x))⊃∃x. A(x) true does not have
a normal proof. After one forced step, we have to prove

∀x. A(x) ↓
...

∃x. A(x) ↑

Draft of September 18, 2008

54 First-Order Logic and Type Theory

At this point, no rule is applicable, since we cannot construct any term of type
τ . Intuitively, this should make sense: if the type τ is empty, then we cannot
prove ∃x:τ. A(x) since we cannot provide a witness object. Since we make no
assumptions about τ , τ may in fact denote an empty type, the above is clearly
false.

In classical first-order logic, the assumption is often made that the domain of
quantification is non-empty, in which case the implication above is true. In type
theory, we can prove this implication for specific types that are known to be
non-empty (such as nat). We can also model the standard assumption that the
domain is non-empty by establishing the corresponding hypothetical judgment:

c : τ ` (∀x:τ. A(x))⊃∃x:τ. A(x)

We just give this simple proof in our linear notation.

[c : t;
[!x:t. A(x);
A(c);
?x:t. A(x)];

(!x:t. A(x)) => ?x:t. A(x)];

We can also discharge this assumption to verify that

∀y. ((∀x. A(x))⊃∃x. A(x)) true

without any additional assumption. This shows that, in general, ∀y. B is not
equivalent to B, even if y does not occur in B! While this may be counterin-
tuitive at first, the example above shows why it must be the case. The point is
that while y does not occur in the proposition, it does occur in the proof and
can therefore not be dropped.

Draft of September 18, 2008

4.4 Proof Irrelevance 55

4.4 Proof Irrelevance

So far, we have carefully designed the proof term language so that we can
reconstruct the original deduction, maintaining a bijection. In many contexts
this will give us too much information. Returning to one of our motivating
examples,

∀x:nat. ∃y:nat. y > x ∧ prime(y)

we can see from what we have developed so far, that the computational content
of a constructive proof of this proposition will be a function from a natural
number x that returns a pair consisting of a witness p and a proof that p >
x ∧ prime(p) which is again a pair of proofs. While it may be important for us
to know that these last two proofs exist, in practice we may only be interested
in the prime p, and not the proof that it is indeed greater than x or a prime
number.

Our objective in this section is to find means to selectively hide portions
of a proof. In one direction, this will allows us to extract only part of the
computational content of a proof, making the resulting code much more efficient
to execute. In the other direction, it will allow us write proof-agnostic functions
and reason about them logically.

We will use all concepts and techniques we have developed so to achieve
this goal. The basic idea is to introduce a new proposition [A], pronounced
“bracket A”, for any proposition A. [A] should be true if A is true, except that
we intend to erase the proof before using it computationally. A first cut at the
introduction rule would be

A true

[A] true
[]I?

The corresponding elimination rule

A true

[A] true
[]E?

is sound with respect to the introduction rule, but unfortunately fails to capture
the intent of the type [A]. It says that if we have a proof of [A] (which will
be erased at runtime) then we can get a proof of A (which will be needed at
runtime). It is evident that after erasing the proof of [A] we would have to make
up a proof of A out of thin air, which is not possible in general.

In order to capture this, we need a new judgment A irr (pronounced “A
irrelevant”) which says that A is true but its proof is not computationally
available. The revised elimination rule exploits this judgment to express that
if we know [A] true we know that A is true, but that we cannot use its proof
computationally.

[A] true

A irr
u

...
C true

C true
[]Eu

Draft of September 25, 2008

56 First-Order Logic and Type Theory

How do we use assumptions A irr? From the discussion above it should be clear
that it is must remain too weak to prove A true: the latter requires a computa-
tionally relevant proof term but the former cannot offer one. However, when we
are trying to prove [C] true, then we should be allowed to use assumptions A irr
because a proof of [C] will be erased. The corresponding rule is a bit difficult
to express in the two-dimensional format. It says that at the point we intro-
duce [C] we transform every assumption A irr to a corresponding assumptione
A true.

A1 irr
u1

A1 true · · ·
An irr

un

An true
...

C true

[C] true
[]I

Before carrying out some examples, let us make sure that the rules are locally
sound and complete. First, the local reduction which witnesses local soundness.

A1 irr
u1

A1 true · · ·
An irr

un

An true
D

A true

[A] true
[]I

A irr
u

E
C true

C true
[]Eu

=⇒R

A1 irr
u1

A1 true · · ·
An irr

un

An true
D

A true
A irr

u

E
C true

The operation on the right is again not well represented, visually. It requires a
new substitution principle to substitute a deduction of A true for assumptione
A irr. This works because the assumption A irr can only be used when it is
promoted to an assumption A true, at which place we can use the ordinary
substitution principle. We will see more formally how this works when we have
proof terms below, and hypotheses are written in a localized form.

The local expansion is much simpler.

D
[A] true =⇒E

D
[A] true

A irr
u

A true

[A] true
[]I

[A] true
[]Eu

Here, A true is available to prove the premise of the []I rule because applying
this rule promotes the assumption A irr.

We consider three examples. The first proves that A⊃[A], that is, we can

Draft of September 25, 2008

4.4 Proof Irrelevance 57

forget computational content if we so choose.

A true
u

[A] true
[]I

A⊃[A] true
⊃Iu

The second one shows that we cannot prove [A]⊃A, that is, we cannot span-
teously create computational content,

A true
u

A irr
w

...
A true

A true
[]Ew

[A]⊃A true
⊃Iu

Of course, this is not a convincing argument that we cannot prove [A]⊃A, but
if we also knew that we can always find a proof by using introduction rules from
below and elimination rules from above, then indeed there cannot be any proof.

Finally, we can distribute brackets over implication.

[A⊃B] true
u

[A] true
w

A⊃B irr
u′

A⊃B true
A irr

w′

A true

B true
⊃E

[B] true
[]I

[B] true
[]Ew′

[B] true
[]Eu′

[A]⊃[B] true
⊃Iw

[A⊃B]⊃[A]⊃[B] true
⊃Iu

Now we move on to proof terms. We write hypotheses in localized form,
Γ ` M : A. There are two forms of hypothesis: u:A which labels an assumption
A true, and [u]:A, which labels an assumption A irr. The brackets around u
indicate that it cannot be used directly, but only after a [] introduction, which
“unlocks” the variable u:A. In order to describe this process we define the
process of promotion, written Γ⊕.

(·)⊕ = ·
(Γ, u:A)⊕ = Γ⊕, u:A
(Γ, [u]:A)⊕ = Γ⊕, u:A

We then have the following two rules.

Γ⊕ ` M : A

Γ ` [M] : [A]
[]I

Γ ` M : [A] Γ, [u]:A ` N : C

Γ ` let [u] = M in N : C
[]Eu

Draft of September 25, 2008

58 First-Order Logic and Type Theory

What the hypothesis promotion achieves is, intuitively, that a variable [u]:A can
only be used inside brackets in a term M and not outside. For example:

λu. [u] : A⊃[A]
λf. λx. let [f ′] = f in let [x′] = x in [f ′ x′] : [A⊃B]⊃[A]⊃[B]

are well-typed. The first, because we are free to use u (which stands for A true)
inside brackets, where it will not be used computationally, and the second be-
cause both f ′ and x′ are used only inside brackets, where they will not be used
computationally. On the other hand

λu. let [u′] = u in u′ 6 : [A]⊃A

because u′ is incorrectly used outside a bracket context.
Local reductions and expansions, as well as the substitution principle, are

now much clearer on proof terms.

If Γ⊕ ` M : A and Γ, [u] : A,Γ′ ` N : C then Γ,Γ′ ` [M/u]N : C.

This is correct because the only place where [u]:A can be used in the second de-
duction is underneath a [] constructor where the context is promoted to Γ⊕,Γ′⊕

so that the ordinary substitution principle applies.

let [u] = [M] in N =⇒R [M/u]N
M : [A] =⇒E let [u] = M in [u]

We now go through a few more examples. In order to write these examples
more compactly, we assume that every assumption v:[A] is immediately decom-
posed into [u]:A, and, moreover, u is longer used. In that case, we can write
λ[u]. M instead of λv. let [u] = v in M .

First, we consider variants of the following proposition:

(∃x. A(x) ∧B(x))⊃(∃x. B(x) ∧A(x))

The starting proof of this is straightforward:

λu. let 〈y, w〉 = u in 〈y, 〈sndw, fstw〉〉

Hiding in proof information in the output is consistent.

λu. let 〈y, w〉 = u in 〈y, [〈sndw, fstw〉]〉 : (∃x. A(x) ∧B(x))⊃(∃x. [B(x) ∧A(x)])

We can still hide consistently even if the input proofs (of A(x) and B(x)) are
not available at runtime.

λu. let 〈y, [w]〉 = u in 〈y, [〈sndw, fstw〉]〉 : (∃x. [A(x) ∧B(x)])⊃(∃x. [B(x) ∧A(x)])

This is correct because the only occurrences of w in its scope are inside brackets.
Erasing w will therefore not lead to any dangling variables, that is, variables

Draft of September 25, 2008

4.4 Proof Irrelevance 59

that would be incorrectly assumed to be available at runtime. However, if we
also hide the witness y then the result is no longer well-formed.

λu. let [〈y, w〉] = u in 〈y, [〈sndw, fstw〉]〉 6 : ([∃x. A(x) ∧B(x)])⊃(∃x. [B(x) ∧A(x)])

The problem here is that y is bound inside the brackets but used outside. If we
erased all the content inside the brackets we would have

λu. let [] = u in 〈y, []〉 6 : []⊃(∃x. [])

which is not meaningful as a program even if we interpret [] at > in the propo-
sition and the unit element 〈 〉 in the term.

It is even possible to be more fine-grained. For example, we can hide the
proof of A(x) in the antecedent of the implication of we also hide in the succe-
dent.

Another set of examples comes from a specfication of graph reachability.
We specify that for any two nodes x and y in a graph, either there is a path p
connecting the two nodes or not.

∀x. ∀y. (∃p. path(p, x, y)) ∨ ¬(∃p. path(p, x, y))

A proof of this, when viewed computationally, will be a function taking nodes
x and y as input and returning either inlM or inrN . In the first case, a path
exists, and M is a pair consisting of the path p and a proof that it connects x
and y in the graph. In the second case, no path exists, and M is a function which
derives a contradiction from any candidate path given to it as an argument.

One natural refinement of this specification is to hide the proof that p is
indeed a valid path connecting x and y (which can easily verify this ourselves)
and the proof that there is no path connecting x and y. For the latter, we would
trust the proof (because, say, have verified it before erasing it). To capture this
we would write

∀x. ∀y. (∃p. [path(p, x, y)]) ∨ [¬(∃p. path(p, x, y))]

Now the function extracted from this proof would at runtime return either
inl 〈p, []〉 (that is, the path connecting x and y) or inr [] to indicate there is no
such path.

We can take this one step further, also hiding the path itself. In this case,
the function returns either inl [] if there is a path connecting x and y and inr []
if there is none.

∀x. ∀y. [∃p. path(p, x, y)] ∨ [¬(∃p. path(p, x, y))]

Summary. We present a summary of the rules for proof irrelevance, using the
local form for hypothesis. We have a new form of judgment, A irr which means
that A is true, but the evidence for that is computationally irrelevant, that is,

Draft of September 25, 2008

60 First-Order Logic and Type Theory

may be erased before executing the program. We arrange that A irr is only used
as a hypothesis. We can promote such assumptions using the ∆⊕ operation:

(·)⊕ = ·
(∆, A true)⊕ = ∆⊕, A true
(∆, A irr)⊕ = ∆⊕, A true

Then the introduction and elimination rules are

∆⊕ ` A true

∆ ` [A] true
[]I

∆ ` [A] true ∆, A irr ` C true

∆ ` C true
[]Eu

In the presence of proof terms, we write [u]:A as a labeling of the assumption
A true. Then the promotion operation on labeled contexts Γ becomes

(·)⊕ = ·
(Γ, u:A)⊕ = Γ⊕, u:A
(Γ, [u]:A)⊕ = Γ⊕, u:A

With proof terms, the introduction and elimination rules then read as follows:

Γ⊕ ` M : A

Γ ` [M] : [A]
[]I

Γ ` M : [A] Γ, [u]:A ` N : C

Γ ` let [u] = M in N : C
[]Eu

Draft of September 25, 2008

Lectures 9 and 10: Classical Logic

15-317: Constructive Logic
Dan Licata

September 23-25, 2008

In these two lectures, we will discuss classical logic—which is what peo-
ple were talking about when they taught you about (unqualified) “logic”
in other classes—and its relationship to constructive logic—which is what
we’ve covered so far this semester. We use intuitionistic logic as a synonym
for “constructive logic”; this is helpful so we can use the abbreviations IL
(intuitionistic) and CL (classical). We will answer three questions:

• What is classical logic?

• What is the relationship with intuitionistic logic?

• What is the computational meaning of classical proofs?

1 What is classical logic?

Classical logic differs from intuitionistic logic in that classical logic admits
the law of the excluded middle (LEM), which says that every proposition is
either true or false. The simplest way to describe classical logic is to take
the natural deduction rules we have seen so far and add LEM:

(A ∨ ¬A) true
LEM

Equivalently, we could instead add double-negation elimination, which
says that ¬¬A implies A:

¬¬A true
A true

DNE

Note that double-negation introduction (A ⊃ ¬¬A) is intuitionistically true.

1

It’s easy to see that these are equivalent, by taking IL + LEM and deriv-
ing DNE and vice versa. For example, to derive DNE, assume ¬¬A. Next,
we use LEM on A to get A∨¬A, and therefore have two cases in which we
have to showA. In the first, it’s true by assumption. In the second, we have
¬A and ¬¬A, a contradiction, so we get A by ⊥-elimination.
In the other direction, here is an annotated Tutch-style proof usingDNE:

[u : ˜(A | ˜A)
[v : A

inl v : A | ˜A
u (inl v) : F]

fn v => u (inl v) : ˜A
inr (fn v => u (inl v)) : A | ˜A
u (inr (fn v => u (inl v))) F]

fn u => u (inr (fn v => u (inl v))) : ˜˜(A | ˜A)
DNE (fn u => u (inr (fn v => u (inl v)))) : (A | ˜A)

A couple of things to note:

• Everything before the last line is a perfectly good constructive proof
of ˜˜(A | ˜A) .

• The proof termDNE (fn u => u (inr (fn v => u (inl v)))) .
Doesn’t tell youwhich ofAor ˜A is true. Instead, it assumes u : ˜(A | ˜A)
and proves a contradiction. It does this by calling u with a proof of
˜A . How does this proof work? When given an A, it calls u again, this
time with that very proof that it was given! To anthropomorphize a
little: the first time we call u, we bluff that the answer is ˜A . If u ever
calls our bluff, it must do so by giving us an A and requesting a proof
of F. In that case, we say “dang, you caught me! forget about what I
said before—it was A after all!”. We will talk more about this “time
travel” interpretation of classical proofs below.

1.1 A Better Proof Theory

Hopefully you had a bad feeling about the rules LEM and DNE above:
they violate some of our principles for what inference rules should look
like. In particular, they mention more than one connective, and they are
neither intro nor elim rules. Violating these principles can invalidate lo-
cal soundness and completeness (and their global versions, cut elimination
and identity). In this section, we give a cleaner presentation of classical

2

logic by accounting for DNE at the level of judgments, rather than propo-
sitions.

1.1.1 New judgments

To do so, we need two new judgments:

• # (contradiction)

• A false

The judgment #is a judgmental analogue of ⊥, the false proposition,
whereas A false is a judgmental analogue of A ⊃ ⊥. The rules for these
judgements are as follows:

#

J
#E

A true
u

...
#

A false
fIu A false A true

#
fE

The first says that from a contradiction, you can conclude any judgment
J . The second says thatA is false if assuming it’s true gives a contradiction.
The third says that A being both true and false is contradictory.
A small technical matter: because we now havemultiple judgments, we

need to change the rules we had before that conclude an arbitrary proposi-
tion C true (⊥-elimination, ∨-elimination) to instead conclude an arbitrary
judgment J . I.e.

⊥ true
J

⊥E
A ∨ B true

A true
u

...
J

A true
u

...
J

J
∨Eu,v

1.1.2 Negation

Using these judgments, we can give a primitive account of negation, rather
than treating ¬A as a notational definition for A ⊃ ⊥:

A false
¬A true

¬I
¬A true

A false
k

...
J

J ¬Ek

3

We wrote the rule ¬Ek in the style of ∨-elim, but we could equivalently
have given a rule that looks like ∧-elim: from ¬A true conclude A false.
These two rules are equivalent in our setting here (though keep this dis-
tinction in mind when we talk about focusing in a couple of weeks).

1.1.3 Classical logic

Thus far, all of our new judgments are OK constructively. One way to see
this to prove that the new judgements can be eliminated, treating # as a
notational definition for ⊥ true and A false as A ⊃ ⊥ true, and checking that
all the new rules are derivable. This shows that we have not fundamentally
changed the meaning of truth: the truth of ¬A, a new proposition, depends
on contradiction and falsehood, but the truth of existing propositions such
as A ∨ B is unchanged.
To get classical logic, we add the judgmental version of DNE:

A false
k

...
#

A true DNEk

This rule does change the meaning of truth for existing propositions, be-
cause the A in the conclusion might be, e.g., a disjunction. Note the sym-
metry between DNE and fI : classical logic is more symmetric than in-
tuitionistic logic, where truth means something stronger than merely not
being false.

Exercise. Give a derivation of (¬(A∧B)) ⊃ ¬A∨¬B true. In Homework 2,
you saw that this De Morgan principle was not intuitionistically true, but
it is classically true.
Here’s a Tutch-like proof to guide you along:

[˜(A & B) true
[A & B false

[˜A | ˜B false
[A true

[B true
A & B true
#]

B false
˜B true

4

˜A | ˜B true
#]

A false
˜A true
˜A | ˜B true
#]

˜A | ˜B true]
˜A | ˜B true]

˜(A & B) => ˜A | ˜B true

2 What is the relationship with intuitionistic logic?

Let’s write Γ ⊢c A true for classical truth and Γ ⊢i A true for intuitionistic
truth, where we put a context Γ of hypotheses in the judgement form rather
than using the two-dimensional notation for hypotheses.
It’s easy to prove that:

If Γ ⊢i A true then Γ ⊢c A true.

This says that if an intuitionist asserts A, a classicist will believe him, in-
terpreting A classically. Informally, the move from intuitionistic to classical
logic consisted of adding new inference rules, so whatever is true intuition-
istically must be true classically. This can be formalized as a proof by rule
induction on Γ ⊢i A true.
Of course, the opposite entailment does not hold (takeA to be the law of

the excludedmiddle, or double-negation elimination). However, it is possi-
ble to translate propositions in such a way that, if a proposition is classically
true, then its translation is intuitionistically true. That is, the intuitionist
does not believe what the classicist says at face value, but he can figure out
what the classicist really meant to say, by means of a double-negation transla-
tion. The translation inserts enough double-negations into the proposition
A that the classical uses of the DNE rule are intuitionistically permissible.
We will use the “Gödel-Gentzen negative translation”, which is defined

by a function A∗ = A′ from classical propositions to intuitionistic proposi-
tions. On the intuitionistic side, we use the usual notational definition of

5

¬A = (A ⊃ ⊥).

(⊤)∗ = ⊤

(⊥)∗ = ⊥

(A ∧ B)∗ = A∗
∧ B∗

(A ∨ B)∗ = ¬¬(A∗
∨ B∗)

(A ⊃ B)∗ = (A∗
⊃ B∗)

(¬A)∗ = ¬A∗

(P)∗ = ¬¬P

That is, the classicist and the intuitionistic agree about the meaning of
all of the connectives except ∨ and atomic propositions P . From an in-
tuitionistic point of view, when a classicist says A ∨ B, he really means
¬¬(A∗ ∨ B∗), an intuitionistically weaker statement. Thus, intuitionistic
logic is more precise, because you can say A ∨ B, if that’s the case, or
¬¬(A ∨ B) if you need classical reasoning to do the proof. There is no way
to express intuitionistic disjunction in classical logic. If an intuitionist says
A to a classicist, and then the classicist repeats it back to him, it will come
back as a weaker statement A∗.
On the other hand, the translation has the property that A and A∗ are

classically equivalent. If a classicist says something to an intuitionist, and
then the intuitionist repeats it back to him, the classicist won’t know the
difference: intuitionistic logic makes finer distinctions.
As an aside, there are several other ways of translating classical logic

into intuitionistic logic, which make different choices about where to in-
sert double-negations. Different translations do different things to proofs,
which turns out to have interesting consequences for programming.
How do we verify that this translation does the right thing? First, we

need to lift the translation to judgments as follows:

(A true)∗ = A∗ true

(A false)∗ = (A ⊃ ⊥) true

(#)∗ = ⊥ true

and to contexts Γ by translating each assumption in the context. Then we
can prove:

6

Theorem 1. Γ ⊢c J iff Γ∗ ⊢i J∗.

Proof. The “only if” direction is a consequence of two lemmas mentioned
above:

1. If Γ ⊢i J then Γ ⊢c J

2. For all A, Γ, Γ ⊢c (A ⊃ A∗) ∧ (A∗ ⊃ A) true.

The first is proved by rule induction on Γ ⊢i J , the second by induction on
A.
The “if” direction is proved by induction on Γ ⊢c J . The hard case is

eliminating uses of the DNE rule:

Γ, A false ⊢c #

Γ ⊢ A true
DNE

The inductive hypothesis is

(Γ, A false)∗ ⊢c (#)∗

Expanding the definition of the translation gives:

Γ∗, (A∗
⊃ ⊥) true ⊢c ⊥ true

By implication introduction, this gives

Γ∗
⊢i ¬¬A∗

On the other hand, translating the conclusion of the rule, we need to
show that

Γ∗
⊢i A∗

.
Uh-oh! This is an instance of double-negation elimination, which we

don’t have intuitionistically! So why does the translation work?
The key is that we only need double-negation elimination for the target

of the translation. That is, we need the translation to have the property that
¬¬(A∗) ⊃ A∗. This lemma is true for the translation defined above (you can
prove it by induction onA). But if, for example, we forgot to double-negate
disjunction or atoms, the property would not be true. The lemma that

¬¬(A∗) ⊃ A∗

is how we tell that we’ve added enough double-negations to allow all the
classical reasoning that we need.

7

3 Intermezzo: Truth tables

Once upon a time, someone told you that to check whether a proposition is
(classically) true, you build a truth table. What are the reasoning principles
behind truth tables?

1. To proveP prop ⊢ A true, it suffices to prove [⊤/P]A true and [⊥/P]A true.

2. You compute the truth value of a connective from the truth values of
its components, using equations like

⊤ ⊃ ⊤ ≡ ⊤

⊤ ⊃ ⊥ ≡ ⊥

⊥ ⊃ ⊤ ≡ ⊤

⊥ ⊃ ⊥ ≡ ⊥

The equations in (2) are true, constructively and classically, if you inter-
pret A ≡ B as (A ⊃ B) ∧ (B ⊃ A).
But what about (1), the idea that to prove a proposition A, you can dis-

tinguish cases on the truth of an atomic proposition P appearing in A?. As
you might expect, this reasoning is valid classically but not constructively.
By the law of the excluded middle, we can case-analyze P ∨ ¬P :

P ∨ ¬P
LEM

P true
u

...
J

¬P true
v

P false
k

...
J
J ¬Ek

J
J

∨Eu,v

Thus, to show J , it suffices to show P true ⊢ J and P false ⊢ J .
So, to justify the truth-table reasoning, we just need the following lemma:

Lemma 2.

1. For all J , if [⊤/P]J then (P prop, P true ⊢ J)

2. For all J , if [⊥/P]J then (P prop, P false ⊢ J)

8

Here’s an intuition for why this is true: For the first part, everywhere
the ⊤I rule was used, we can instead use the assumption of P true. For
the second, everywhere the derivation uses ⊥E from a proof of ⊥ true, we
instead have a proof of Ptrue, which can be used with fE and #E to con-
clude anything.

4 What is the computationalmeaning of classical proofs?

4.1 Proof Terms

Let’s annotate the above rules with proof terms:

M : #

abort M : J

u : A true
...

M : #

cont u.M : A false
M : A false N : A true

throw M N : #

M : A false
not M : ¬A true

M : ¬A true

k : A false
...

N : J
notcase(M, k.N) : J

k : A false
...

M : #

letcc(k.M) : A true

4.2 Programming with continuations

As you know, when you give a proof term assignment to some logical rules,
the operator names (abort, throw, letcc, . . .) are arbitrary. However, the
names we’ve chosen here are fairly standard for the programming feature
distinguishes classical proofs from constructive ones: continuations.
The term letcc(k.M) is short for “let the current continuation be k in

M”. What is the “current continuation”? It’s all the work that’s left to do
in the rest of the program. In implementation terms, letcc gives the pro-
gram access to its own control stack. In letcc, the current control stack gets
packed up as value bound to k. Continuations are used by throwing them

9

a value, which forgets about the current execution context and runs a stack
that you previously saved on that value. Continuations can be thrown to
multiple times, which makes the control flow in a program with continu-
ations very different than the traditional push/pop behavior that you get
from function calls in intuitionistic logic. You might save a stack, run it
on a value, go off and do something else for a while, and then come back
to that stack again with a different value. Unlike languages without letcc,
control stacks must be implemented as persistent data structures, not just
as an ephemeral piece of mutable memory. Continuations are a very gen-
eral mechanism, and can be used to implement other control forms, such
as exceptions, coroutines, and threads.
As an example of programming with continuations, consider a function

that multiples all the integers in a list. In writing this code, we’ll assume
that intlist and int are propositions, like they would be in ML, and that
we can write pattern-matching functions over them. Here’s a first version:

mult’ : intlist => int
mult’ [] = 1
mult’ (x :: xs) = x * mult’ xs

I.e., the multiplication of the empty list is 1, and the multiplication of
x :: xs is the head times the multiplication of the tail.
What happenswhenwe callmult’ [1,2,3,0,4,5,....] where the

... is 700 billion1 more numbers? It does a lot more work than necessary
to figure out that the answer is 0. Here’s a better version:

mult’ : intlist => int
mult’ [] = 1
mult’ (0 :: xs) = 0
mult’ (x :: xs) = x * mult’ xs

This version checks for 0, and returns 0 immediately, and therefore does
better on the list [1,2,3,0,4,5,....] .
But what about the reverse list [...,5,4,0,1,2,3] ? This version

still does all 700 billion multiplications on the way up the call chain, which
could also be skipped.
We can do this using continuations:

mult xs = letcc k : int false in
let
1this week’s trendy really-large number to pull out of thin air

10

mult’ : intlist => int
mult’ [] = 1
mult’ (0 :: xs) = abort(throw k 0)
mult’ (x :: xs) = x * (mult’ xs)

in throw k (mult’ xs)

The idea is that we grab a continuation k standing for the evaluation
context in which mult is called. Whenever we find a 0, we immediately
jump back to this context, with no further multiplications. If we make it
through the list without finding a zero, we throw the result of mult’ to
this continuation, returning it frommult .
Let’s try to run (mult [0,1,2]) + 5 . It’s easiest to define evalua-

tion for proofs of #, so we’ll run this term against an initial continuation
variable halt : int false .

throw halt ((mult [0,1,2]) + 5)
⇒R throw halt

(letcc k in let ... in throw k (mult’ [0,1,2])) + 5)
⇒R (throw (cont u.throw halt (u + 5))

(([(cont u.throw halt (u + 5))/k]mult’) [0,1,2])
⇒R (throw (cont u.throw halt (u + 5))

(abort (throw (cont u.throw halt (u + 5)) 0)))
⇒R (throw halt (0 + 5))
⇒R (throw halt 5)

Some things to note:

• In the second reduction step, thewhole expression enclosing the letcc
is packed up as a cont and substituted for k .

• In the third reduction, we evaluate a throw by evaluating the proof of
A true . Another choice would be to evaluate the proof of A false ;
these correspond to different evaluation orders for the programming
language.

• In the fourth reduction, we have a throw whose true expression is
fully evaluated, so we substitute this value into the continuation and
forget the enclosing context.

What is the continuation assumption halt ? This represents the initial
continuation of the program (in practice, this might print the final value out
to the user). We need this initial continuation assumption because there are
no closed contradictions in classical logic!

11

Exercise. Recast the code for mult as a proof of ∀x : intlist.∃y : int.⊤, so
intlist and int are treated as types of objects rather than as proposi-
tions.
As another example, returning to the proof of LEM above, we can now

write it as:

letcc k : ˜(A | ˜A) in
throw k (inr (not (cont v => k (inl v))))

Executing this code will resume the continuation k twice: first with
inr M , and then, if k ever uses M, with inl v where v is the value that
k supplies. The program “time travels” between different moments in its
execution.

Exercise. Give proof terms for the following:

• (A ⊃ B) ⊃ (¬B ⊃ ¬A)

• (¬B ⊃ ¬A) ⊃ (A ⊃ B)

4.3 Continuation-Passing Style

Classical logic is a functional-programming language with letcc, and intu-
itionistic logic is a functional programming language without it. So what
is the computational meaning of the double-negation translationA∗, which
transforms classical forms into intuitionistic proofs? It is a transformation
on programs that eliminates all uses of letcc, usually called a continuation-
passing style (CPS) translation.
For example:

(intlist ⊃ int)∗ = intlist∗ ⊃ int∗

= ¬¬intlist ⊃ ¬¬int

= ¬¬intlist ⊃ ¬int ⊃ ⊥

Here, a function that takes an intlist and returns an int is transformed into a
function that:

1. takes an extra argument of type ¬int, representing the current contin-
uation (hence, continuation-passing style)

2. never returns (because its result type is ⊥)

12

CPS translation is used in compilers for several reasons: First, it reduces
the problem of implementing a language with letcc to that of implement-
ing a language without it. Second, even if you’re compiling an intuition-
istic language, there are reasons to CPS convert it: (1) The control flow
that you have to implement is simpler, because functions call but never re-
turn. Consequently, there is no need for a control stack—or, more precisely,
the control stack is represented as heap objects, just like all other values in
the program. (2) CPS conversion makes certain optimizations, such as one
called tail-call optimization, easier to do.

4.4 Running a CPS program

The CPS conversion of a program likemult [1,2,3,4,5] has type¬int ⊃

⊥. So how do you actually see what number it produced? One option is to
extend the language with an initial continuation, as discussed above. An-
other is to revise the double-negation translation so use an arbitrary answer
type in place of ⊥. Let’s define ¬αA = A ⊃ α. Then the following double-
negation translation works:

(⊤)∗ = ⊤

(⊥)∗ = α

(A ∧ B)∗ = A∗
∧ B∗

(A ∨ B)∗ = ¬α¬α(A∗
∨ B∗)

(A ⊃ B)∗ = (A∗
⊃ B∗)

(¬A)∗ = ¬αA∗

(P)∗ = ¬α¬αP

The proof is similar to above, but requires the additional lemma that for
all A, α ⊃ A∗.
For α = ⊥, the translation is the same as above. But what if we take

α = int. Then

int∗ = ¬int¬intint

= (int ⊃ int) ⊃ int

Now we can supply the identity function fn x => x as the initial contin-
uation, and get back an actual number.

13

Logically, this says that a classical proof of a base type P (from no hy-
potheses) determines an intuitionistic proof of P itself—not just the double-
negation of P . The same device can be used to study other classes of propo-
sitions for which intuitionistic and classical logic agree.

14

	01-overview
	02-natded
	03-harmony
	04-pap
	05-subred
	06-quant
	07-compq
	08-irrelevance
	09-10-classical

