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In these notes and lectures we will discuss some of the differences between
classical and constructive logic. In the first few sections we will try to place
the issues in a broader philosophical, mathematical, and historical context.
After that, we will discuss what one can concretely say about the relationship
between the two kinds of logic.

1 The classical and constructive viewpoints

Logic can be described as the science of reasoning. Some of the central
questions that logicians try to address are: “What constitutes a logical
argument?” “What does it mean to say that a certain statement is a logical
consequence of another?”

These questions are extremely broad, and to make any kind of progress
we need to narrow our focus. In everyday life, we use different modes of
reasoning in different contexts. We can reason about our experiences, and
try to determine causal relations between different types of events; this forms
the basis of scientific inquiry. We can reason probabilistically, and try to
determine the “odds” that the Pirates will win the World Series; or we
can employ subjunctive reasoning, and wonder what would have happened
had Bill Clinton lost the election. We can reason about events occuring in
time, or space; we can reason about knowledge, and belief; or we can reason
about moral responsibility, and ethical behavior. We can even try to reason
about properties that are vague and imprecise, or try to draw “reasonable”
conclusions from vague or incomplete data.

For the most part, in this course we will be interested in one very specific
kind of reasoning, namely, the kind that is appropriate for reasoning about
abstract mathematical data like numbers, sets, functions, trees, sequences
(lists), graphs, and so on. Consider the statement “every even number
greater than two can be written as a sum of two primes,” or “every binary
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tree of depth n has at most 2n− 1 nodes.” Faced with assertions like these,
we may wonder whether or not they are true. But typically we do not ask
for the “odds” that they are true, whether it is morally proper for them to
be true, how long they will be true, or whether they could have been false
in some alien universe. In short, we will focus the “abstract” or “universal”
aspect of logic, which aims to show that certain statements are necessarily
true, independent of time or the particular state of our world.

Later in the course we will see that for computational purposes, it is often
useful to consider more general types of logic. For example, when reasoning
about computations, one may want to include temporal considerations: we
may want to show that a process will never hang, every print request to an
operating system will eventually be serviced, or an interrupt request to a
processor will be handled at the next clock cycle. Or, for nondeterministic
computations, we may wish to include modal considerations, to reason about
the states our system might possibly be in at some point in time. For the
time being, though, let us just focus on the “mathematical” core of logic
described in the last paragraph.

Applied to mathematical reasoning, what, then, is constructive logic?
The word “constructive” is usually used in contrast to “classical” or “non-
constructive.” The corresponding forms of logic reflect different understand-
ings, or viewpoints, as to the nature of reasoning about abstract objects.

Roughly speaking, from a classical point of view, every meaningful state-
ment is assumed to be either true or false independent of whether or not
we know which is the case, and quantifiers like “all” or “some” are assumed
to range over a well-defined domain. For example, the Goldbach conjecture
asserts that every even number greater than two can be written as the sum
of two primes. This statement has neither been proved nor disproved, but
classically speaking, it is either true or false. After all, the set of natural
numbers is assumed to be a well-defined collection, and so a statement of
the form “every number has property X” is assumed to have a well-defined
truth value.

From the constructive point of view, the emphasis is not on “truth in
the abstract,” but, rather, on the means of verification. From a constructive
viewpoint, we are justified in asserting that a statement is true only when
we have verified that it is true, and we can correctly assert that it is false
only when we have verified that it is false. Similarly, we are allowed to assert
“A or B” only once we have either verified A or verified B. Thus, from a
constructive point of view, we are not now justified in asserting “either the
Goldbach conjecture is true, or the Goldbach conjecture is false.”

This divergence of viewpoints is not just a verbal one; it affects that
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type of arguments that are regarded as valid. For example, consider the
following question. Remember that a real number r is called rational if it
can be written as a quotient of two integers, r = m/n, and irrational if
it can’t be. For example, −329/517 is rational, but

√
2 is not. We know

that it is possible to raise an irrational number to a rational power, and get
a rational result: for example,

√
2

2
= 2. What is less clear is whether it

is possible to raise an irrational number to an irrational power, and get a
rational result. The following theorem answers this in the affirmative:

Theorem 1.1 There are irrational numbers a and b such that ab is rational.

Proof. Consider
√

2
√

2
. If this is rational, we are done: we can let a = b =

√
2.

Otherwise, it is irrational. Then we have

(
√

2
√

2
)
√

2 =
√

2
√

2×
√

2
=
√

2
2

= 2,

which is certainly rational. So, in this case, let a be
√

2
√

2
, and let b be

√
2.

�

Is this a valid proof? Most mathematicians agree that it is. But there
is something unsatisfying here: we have proved the existence of a pair of
real numbers with a certain property, without being able to say which pair
of numbers it is. A constructivist would object, insisting that a proper
existence proof should provide an explicit, unconditional description of the
objects it asserts to exist. He or she would point out that we have proved

the theorem only under the supposition “either
√

2
√

2
is rational, or it is

not,” but would argue that this assertion requires further justification.
In fact, the classical and constructive viewpoints differ even as to what

constitutes a legitimate definition. To give a simple example, let a be the

real number that is
√

2, if
√

2
√

2
is rational, and

√
2
√

2
otherwise. From a

classical point of view, this is a perfectly good description of a real number,
while, from a constructive point of view, it is not.

The following scenario might help you better understand the constructive
point of view. Suppose I came up to you one day and announced that I had
determined a natural number x, with the property that if x is prime, the
Goldbach conjecture is true, and if x is composite, the Goldbach conjecture
is false. Great news! Whether the Goldbach conjecture is true or not is one
of the big open questions of mathematics, and here I seem to have reduced
the problem to one of calculation, that is, to the determination of whether
a specific number is prime or not.
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What is the magic value of x? Let me describe it as follows: x is the
natural number that is equal to 7 if the Goldbach conjecture is true, and 9
otherwise.

Angrily, you cry foul. From a classical point of view, the description
above really determine a unique value of x, and so constitutes a perfectly
good “definition.” But from a constructive point of view, any proper def-
inition of a mathematical object should allow us to compute with it. For
example, from the definition of a natural number we should be able to de-
termine the first digit, or whether the number is even or odd, or whether it
is greater than 100 or not, and so on.

At this point it will be useful to introduce a distinction between the no-
tions of “logical argument” and “mathematical argument.” Roughly, we will
think of mathematics as consistig of logical reasoning about mathematical
objects. In other words, we will think of a mathematical proof as being a
logical proof from mathematical axioms and assumptions.

Intuitively, this makes sense. Certain features of a mathematical ar-
gument seem to lie on the “logic” side, notably uses of words like “and,”
“or,” “if. . . then,” “every,” and so on. Other aspects seem to belong more
to the realm of mathematics: notions like “number,” “function,” “point,”
“line,” for example. However, there is no clear line between the two. For
example, do notions like “set” and “property” count as logical concepts, or
mathematical ones? In the 19th century Gottlob Frege claimed that all of
mathematics could be explained in terms of logical constructions, making
mathematics a part of logic. This “logicist” claim was pursued by Bertrand
Russell in the early part of his career, culminating in the great three volume
work, Principia Mathematica, written by Russell and Alfred North White-
head and first published between 1911 and 1914. But most philosophers
today consider the logicist program to have failed, since, in order to do
mathematics, Russell and Whitehead were forced to introduce axioms that
did not seem strictly logical.

Though the distinction between “logic” and “mathematics” is not a
sharp one, it is nonetheless useful. We can now characterize constructive
mathematics as constructive reasoning about constructively presented ob-
jects, and classical mathematics as classical reasoning about classically pre-
sented objects. In the next few sections we will discuss some of the differ-
ences between classical and constructive mathematics. After that, we will
focus on the underlying logic.
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2 Examples from number theory

It will be helpful to illustrate the differences between the classical and con-
structive viewpoints with some examples from number theory.

If a and b are natural numbers, a divides b if and only if b is a multiple
of a, i.e. there is an natural number c such that ac = b. A natural number
greater than 1 is prime if the only numbers dividing it are 1 and itself.

Theorem 2.1 Every natural number greater than 1 can be written as a
product of primes.

Proof. Use induction. Suppose a greater than 1. If a is prime, we are done.
Otherwise, a can be written as a product of smaller numbers, a = b × c.
Inductively write b and c as products of primes. �

This argument is acceptable constructively, as well as classically. The
next theorem was known to Euclid, and appears in his Elements.

Theorem 2.2 There are infinitely many prime numbers. More precisely:
given any number M , there is a prime number bigger than M .

Proof. Suppose there were only finitely many prime numbers, that is, for
some natural number M all the prime numbers are less than or equal to M .
Then we could make an explicit list of all of them, say, p1, . . . , pk.

Let N = p1 · p2 · . . . · pk + 1. Notice that none of p1, . . . , pk divide N ,
since each leaves a remainder of 1. Now, either N is prime, or it can be
factored into primes. So there is at least one prime number q dividing N .
But q can’t be any of the numbers p1, . . . , pk, so q is a prime number that
is not on the list. This contradicts our assumption.

Assuming that there were only finitely many prime numbers led to a
contradiction. So, the assumption has to be false, and there are infinitely
many primes. �

This proof has a classical flavor, since it is a proof by contradiction: we
have proved that there is a prime number bigger than M by showing that it
can’t be the case that there isn’t. We expect a constructive proof to show us,
explicitly, how to find a prime number bigger than M . But the proof above
is more constructive than it appears at first glance. In fact, the following
rewording shows that this constructive information is not hard to find:

Proof. Given any M , make a list of all the primes less than equal to M , say
p1, . . . , pk. Let N = p1 · p2 · · · . . . pk + 1. Factor N into primes, and let q be
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any prime factor. Then q is a prime that is not in the list p1, . . . , pk, and
so, q is a prime number bigger than M . �

Let us consider another example. If a and b are positive natural numbers
greater than or equal to 1, the greatest common divisor of a and b is exactly
what it sounds like: the biggest number that divides both a and b.

This definition makes sense, because we know that at least the number
1 divides them both. This provides an algorithm for finding the greatest
common divisor of a and b: just test all the positive numbers less than the
smaller of the two, and take the biggest one that divides them both. Our
constructive proof of the following theorem will provide a better algorithm;
but, once again, we will start with a nonconstructive proof.

Theorem 2.3 Let a and b be positive natural numbers, and let d be the
greatest common divisor of a and b.

1. There are integers x and y such that d = ax+ by.

2. If e is any common divisor of a and b, then e divides d.

Proof. The second statement follows from the first: if e divides a and b, then
it divides ax+ by, and hence d.

To prove the first statement, let A be the set of all integral linear com-
binations of a and b. In other words, A is the set of numbers that can be
written in the form au+bv for some pair of integers u and v. In set-theoretic
notation,

A = {au+ bv | u ∈ Z ∧ y ∈ Z}.

Let B be the set of all positive numbers in A. B is nonempty, since, for
example, a+ b is in B. So B has a smallest element, d. Let x and y be the
integers such that d = ax+ by.

We need to show that (1) d divides a and b, and (2) if some other number
e divides both a and b, then e ≤ d.

Let us do (1) first. Suppose d does not divide a. Then dividing a by d
yields an integer quotient, q, and a nonzero remainder, r. In other words,
we have a = qd+ r, where r is some number between 0 and d. But now we
can write

r = a− qd = a− q(ax+ by) = a(1− qx) + b(qy),

which is a smaller positive linear combination of a and b. This is a con-
tradiction, so d divides a. The same argument can be used to show that d
divides b.
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(2) is easy: we have already noted that if e divides both a and b, then e
divides d. This implies that e ≤ d. �

This proof also has a classical flavor. For example, (1) above was proved
indirectly; we assumed that d did not divide a, and derived a contradiction.
But most constructivists accept the “law of the excluded middle,” p or not
p, in this special case: since we can decide whether d divides a by simply
tesing all the possible divisors, which are less than a, we are allowed to
assume that either d divides a, or it doesn’t.

A more dubious step occurs in the definition of B; our definition does
not, on the surface, come with an explicit procedure that enables us to
determine whether or not a given number is in B, let alone find the least
element. But if we examine the proof more closely, we find that it does tell
us that there is at least one element of B; for example, a+ b. And the proof
tells us that if we have a number in B that is not the greatest common
divisor of A and B, we can find a smaller number in B.

These observations can be used to turn the proof above into a construc-
tive one, which then yields the well known Euclidean algorithm for deter-
mining the GCD of a and b. Indeed, suppose a is greater than b. Write
a = bq + r. If r is equal to 0, b is the greatest common divisor. Otherwise,
any number dividing a and b also divides r = a − bq; so we are reduced to
computing the greatest common divisor of b and r. If we iterate this process,
the remainder gets smaller at each step. When the remainder is finally 0,
we have the greatest common divisor, d. From the chain of equations, we
can find values x and y satisfying d = ax+ by.

3 Other mathematical examples

The examples above may convey the impression that every classical proof
has a constructive version. But this is not the case: there are classical
theorems that are constructively false; and there are classical theorems that
may well have constructive proofs, but none are known. In this section we
will discuss some examples.

An example of a classical theorem that is not provable constructively is
the statement that every bounded increasing sequence of real numbers has
a least upper bound. To explain this, let me sketch some of the background
definitions. Some of you are used to thinking of a real number as an infinite
decimal. This is not far from the standard, classical mathematical viewpoint.
The constructive viewpoint is a slight variation: one thinks of a real number
r as given by a function which, on input n, returns a rational approximation
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to r which is within, say, 1/10n. More formally, a real number is a function f
from the natural numbers, N, to the rationals, Q, such that for every n and
m ≥ n, |f(m)−f(n)| is less than 1/10n. Such a sequence f(0), f(1), f(2), . . .
is called a Cauchy sequence with a fixed rate of convergence. The main
difference between the classical and constructive viewpoints is that a classical
mathematician allows f to be an “arbitrary” function, while the constructive
mathematician expects f to be computable, in some sense. We will say more
about this difference later.

Now let a0, a1, a2, . . . be an increasing sequence of real numbers between
0 and 1. A real number b is an upper bound to this sequence if ai ≤ b for
every i. A real number b is a least upper bound if b is an upper bound and
for every other upper bound c, b ≤ c.

Draw a picture: first, put down a pair of x-y coordinate axes. On the x
axis, mark of the natural numbers 0, 1, 2, . . .. On the y axis, mark off the in-
terval [0, 1]. Then plot an increasing sequence of real numbers a0, a1, a2, . . .,
all between 0 and 1.

Your intuition may tell you that such a sequence has a least upper bound.
Classically, the argument goes roughly as follows: first divide the interval
[0, 1] into tenths, marking off 1/10, 2/10, 3/10, . . .. Let n be the least number
(less than or equal to 10) such that all the ai are less than n/10. If n = 0,
0 is the least upper bound. Otherwise, (n − 1) is the first decimal digit of
the least upper bound. Then, divide the interval [(n− 1)/10, n/10] into ten
pieces, and proceed as before, to determine the second digit. Keep going.
The resulting sequence of digits determines the least upper bound, b.

Constructively, this proof is not valid. The problem is this: given a
description of the sequence a0, a1, a2, . . ., in general there isn’t an algorithmic
procedure to determine whether or not all the ai are less than a particular
fraction (like 1/10).

In fact, constructively, the theorem is false. The argument that this is
the case uses the fact that the halting problem is unsolvable; in other words,
given a reasonable numbering of the Turing machines M0,M1,M2, . . ., there
is no algorithm which, on input i, determining whether or not Turing ma-
chine Mi halts when started on an empty tape. We will describe a sequence
of real numbers (in fact, of rational numbers) such that a least upper bound
yields a solution to the halting problem, and so, is not computable.

The sequence of rationals a0, a1, a2, . . . is constructed as follows. At stage
i, simulate machines M0, . . . ,Mi for i steps. For each number j between 0
and i, let pi,j be 0 if Turing machine Mj has not halted in i steps, and 1 if
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it has. Let

ai =
i∑

j=0

pi,j
2j+1 .

You can think of ai as a binary fraction, in which the jth digit after the
“binary point” gets switched on if the jth machine has halted by the ith
stage.

It is not hard to see that the sequence a0, a1, a2, . . . is increasing, since
as i grows, more machines halt. With some work, one can justify the claim
that if f is a least upper bound, then f provides a solution to the halting
problem.

We have seen examples of classical theorems that are also constructive
theorems, and examples of classical theorems that are not constructive theo-
rems. There are als examples of classical theorems for which the constructive
proofs are much harder, or for which it is not known whether or not they
can be proved constructively.

A proof in the first section used the fact that “either
√

2
√

2
is rational,

or it isn’t.” Classically, this has a trivial proof; it is just a logical axiom, the

law of the excluded middle. In fact, one can prove constructively that
√

2
√

2

is irrational, though both the classical and constructive proofs are hard.
A more interesting example is Fermat’s Last Theorem. This is now

almost universally accepted has having been proved. But the proof is very
long, and uses very advanced methods from algebraic and analytic number
theory, that have, for the most part, been developed classically. So, at
present, it is unknown whether or not this can be proved by constructive
methods.

4 Historical and philosophical issues

Before the 19th century there was not a sharp distinction between classi-
cal and constructive proofs in mathematics, for the simple reason that most
proofs were more or less constructive. But the latter half of the 19th century
witnessed what many consider to have been a revolution in mathematics,
which involved the introduction of new and nonconstructive methods of rea-
soning about the infinitary structures. Such reasoning involved “arbitrary”
real numbers, “arbitrary” functions, and “arbitrary” sets of objects, defined
using abstract methods that did not correspond to explicit algorithmic pro-
cedures.

9



These new methods were controversial. Some mathematicians, like Leopold
Kronecker, objected, insisting that all mathematical objects be described
in terms of symbolic representations and explicit algorithms. In his 1883
Grundlagen einer allgemeinen Mannigfaltigkeitslehre (Foundation of a gen-
eral theory of manifolds), Georg Cantor responded to this criticism with a
passage that is now famous:

It is not necessary, I believe, to fear, as many do, that these prin-
ciples contain any danger to science. For in the first place the
designated conditions, under which alone the freedom to form
numbers can be practised, are of such a kind as to allow only
the narrowest scope for discretion. Moreover, every mathemat-
ical concept carries within itself the necessary corrective: if it
is fruitless or unsuited to its purpose, then that appears very
soon through its uselessness, and it will be abandoned for lack of
success. But every superfluous constraint on the urge to mathe-
matical investigation seems to me to bring with it a much greater
danger, all the more serious because in fact absolutely no justifi-
cation for such constraints can be advanced from the essence of
the science — for the essence of mathematics lies precisely in its
freedom.

By the turn of the century, the stakes were raised. Problems were dis-
covered with some uses of Cantor’s notion of set (indeed, Cantor was aware
of some of these dangers), and in 1903 Russell discovered a related paradox
in Frege’s logical foundations for mathematical reasoning. So now the issue
was not only whether or not the new methods in mathematics were correct;
but, indeed, whether or not they were even consistent.

In the 1910’s, L. E. J. Brouwer mounted a campaign to “refound” math-
ematics on a logic which rejected the law of the excluded middle, based on
his “intuitionist” philosophy of mathematics. (The words “constructive”
and “intuitionistic” are used today almost interchangeably.) David Hilbert,
one of the most influential mathematicians of all time, responded angrily
that “denying a mathematician use of the principle of excluded middle is
like denying an astronomer his telescope or a boxer the use of his fists.” Just
as colorfully, he declared that “no one will drive us from the paradise that
Cantor has created for us.”

Hilbert proposed a means of rescuing classical mathematics from the
threat of inconsistency and intuitionist challenges. The idea was to rep-
resent classical mathematics with formal axiomatic systems, and to prove
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the consistency of these systems with secure, “finitary” methods that were
acceptable to even the strictest of constructivists. Gödel’s incompleteness
theorems of 1931 showed that, unfortunately, Hilbert’s program could not
succeed: any reasonable system of classical mathematics would have to in-
clude Hilbert’s finitary methods, and Gödel showed that no such system can
prove its own consistency, unless it, itself, is inconsistent.

Since then, these issues have played a central role in the philosophy of
mathematics. From the historical considerations above, we can extract a
number of arguments in favor of constructive methods. One might argue
that they are

• more secure, i.e. there is less likelihood of falling into error or incon-
sistency;

• more meaningful, i.e. more in tune with the nature of mathematical
objects and knowledge; or

• more useful, in terms of applications to the sciences.

The usual classical response is that constructive methods place too much
of a burden on mathematics, invalidating central theorems and detracting
from its elegance. Indeed, many justifications of classical mathematics also
point to its usefulness, and applications in the development of science and
technology.

On an abstract level, philosophers would like to give a general account
of mathematical existence and mathematical knowledge that might help
adjudicate the dispute. On a less abstract level, one wants to characterize
the general goals and methods of mathematics, and try to determine which
methods are best suited to the various goals.

How do things stand today? Philosophical debates as to the metaphys-
ical basis for mathematics continue, but there is no single account that is
generally accepted as unproblematic. Lo and behold, mathematics still goes
on. Classical methods of reasoning, with reasonable restrictions the gen-
eral notion of a set, have not revealed any inconsistencies, and today most
mathematicians reason classically. In that sense, the 19th century revolu-
tion is complete; Cantorian methods are now commonplace. On the other
hand, with the rise of the computer, there is also a good deal of interest in
algorithmic aspects of mathematics; in that sense, Kronecker’s insistence on
symbolic representation and algorithms was ahead of its time.

With regard to the question as to whether mathematical reasoning should
be classical or constructive, one need not adopt an “either/or” attitude. As
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noted above, aspects of both are found in everyday mathematics; and so
a better question is to determine what kinds of reasoning are appropriate
in which contexts, or towards which goals. The attempt to characterize
the general methods used by contemporary mathematicians and understand
them better is still a central focus in the field of mathematical logic. Mean-
while, the advent of computer science has brought new issues to the fore, as
well a fresh perspective on issues related to constructivism.

5 The role of symbolic logic

In trying to characterize the differences between classical and constructive
logic, we have made a number of rather vague claims:

1. Constructive logic depends on a certain understanding of the meaning
of logical terms, which is different from the classical viewpoint.

2. A constructive proof should enable one to “construct” the objects as-
serted to exist.

3. Constructive proofs have algorithmic content.

4. Constructive logic, by its nature, has applications where computation
is concerned.

These claims might help you understand what we mean by the term “con-
structive logic,” but they are fairly imprecise. We would like to explore the
issues in a more down-to-earth, concrete way.

The methods of symbolic logic provide a very useful approach. The
idea is to provide formal mathematical descriptions of the kinds of logic we
are interested in, and use these descriptions to flesh out the claims above.
For example, in this course we chose to use symbols ∧, ∨, ⊃, and ⊥ to
represent basic logical terms like “and,” “or,” “implies,” and “false.” We
then presented precise rules that govern the use of these symbols. In a sense,
these rules provide a clear explanation of the constructive understanding of
the logical terms.

We have also begun to explore the relationship between constructive
logic and computation. Our formal presentation of constructive logic makes
it clear that the rules for forming propositions and proving that they are true
bear a striking similarity to rules for forming data types and constructing el-
ements of those types. The “Curry-Howard isomorphism” provides one way
of making this correspondence precise, as do formal presentations of type
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theory. On a practical level, this correspondence will help us understand
ways in which we can extract computer programs from constructive proofs,
or even view proofs as programs themselves.

In short, symbolic logic helps us clarify our intuitions, and puts us in
a better position to address the philosophical issues. In the next section,
we will use the formal analysis to explore the relationship between classical
logic and constructive logic. And in the section after that, we will turn to a
discussion of the relationship between classical and constructive mathemat-
ics.

6 The relationship between classical and construc-
tive logic

The rules of inference you have seen so far reflect the constructive under-
standing of the logical connectives. What do we need to do to get classical
logic? The classical viewpoint is more liberal than the constructive one, in
the sense that any constructive proof is classically valid. So we can obtain
classical logic by adding some additional rules to the constructive ones.

One option is to add the law of the excluded middle: for every proposition
A, the judgement

A ∨ ¬A true.

We will denote this axiom EM . Another option is to add the axiom

¬¬A ⊃ A true

for every proposition A. We will call this DN , for double negation elimina-
tion. The most natural option, however, takes the form of a rule representing
the classically valid practice of proving a statement by contradiction. Clas-
sically, to prove a proposition A, it is valid to assume ¬A and obtain a
contradiction. In rule form:

u¬A
...
⊥ RAAu

A

The letters RAA stand for “reductio ad absurdum.” Do not confuse this
rule with the following:

13



u
A
...
⊥ u¬A

Since we have defined ¬A to be A ⊃ ⊥, this is just an instance of the
introduction rule for ⊃. So this rule is constructively valid, in contrast to
RAA.

The following theorem tells us that it doesn’t really matter which option
we choose.

Theorem 6.1 With any one of the three additions above (EM, DN, or
RAA), one can derive any other.

Proof. We will show that RAA and DN are equivalent, and that with RAA
one can prove the law of the excluded middle. For homework, you will be
asked to show that, using the law of the excluded middle, one can derive
RAA.

The following is a proof of ¬¬A ⊃ A, using RAA:

u¬¬A v¬A
⊥ RAAv

A u¬¬A ⊃ A
For brevity, we have left off the annotation ⊃ I at the inference labelled u.
The following shows that using ¬¬A ⊃ A, if one can derive ⊥ from ¬A,
then A follows:

¬¬A ⊃ A

u¬A
...
⊥ u¬¬A

A

The following is a proof of A ∨ ¬A, using RAA:

u
¬(A ∨ ¬A)

u
¬(A ∨ ¬A)

v
A

A ∨ ¬A
⊥ v¬A

A ∨ ¬A
⊥ RAAu

A ∨ ¬A
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Modulo the homework assignment, this completes the proof. �

Let us explore some of the ways in which classical logic differs from
constructive logic. Right off the bat, we know that A∨¬A is derivable clas-
sically. But it is not derivable constructively, in general. To see this, remem-
ber that anything derivable constructively in fact has a normal derivation.
Remember that in a normal derivation, every formula appearing is either
a subformula of the conclusion or a subformula of one of the hypotheses.
Working backwards, such a derivation would have to either be of the form

...
A ↑

A ∨ ¬A ↑

or

u
A ↓

...
⊥ ↑

u¬A ↑
A ∨ ¬A ↑

In the first case, with no additional knowledge about A, we will not be able
to derive it. In the second case, the only rule applicable in is ⊃ elimination

u
A ↓

...
B ↓

...
¬B ↑

⊥ ↑

where B is a subformula of A. But the only subformula of A is A itself, and
replacing B by A represents no progress at all.

For another example, consider “DeMorgan’s law,” which is classically
valid:

¬(A ∧B)↔ ¬A ∨ ¬B.

Both constructively and classically, the reverse direction is valid. But the
forwards direction,

¬(A ∧B) ⊃ ¬A ∨ ¬B.

holds classically but not constructively. The following is a classical proof:
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u
¬(A ∧B)

w
¬(¬A ∨ ¬B)

x¬A
¬A ∨ ¬B

⊥ RAAx

A

w
¬(¬A ∨ ¬B)

y
¬B

¬A ∨ ¬B
⊥ RAAy

B
A ∧B

⊥ RAAw

¬A ∨ ¬B u
¬(A ∧B) ⊃ ¬A ∨ ¬B

Let us show that ¬(A ∧ B) ⊃ ¬A ∨ ¬B is not constructively valid, by
showing that it has no normal proof. Working backwards, a normal proof
of an implication looks as follows:

u
¬(A ∧B) ↓

...
¬A ∨ ¬B ↑

u
¬(A ∧B) ⊃ ¬A ∨ ¬B ↑

Working backwards again, the second-to-last inference can only be ∨ intro-
duction, from ¬A or ¬B, or ⊥ elimination. In the last case, we have to
complete the following proof:

u
¬(A ∧B) ↓

...
⊥ ↑

¬A ∨ ¬B ↑
u

¬(A ∧B) ⊃ ¬A ∨ ¬B ↑

A short argument shows that it is not possible to get, in general, from
¬(A ∧ B) to ⊥. We will omit this argument, since a similar one occurs
below. We will therefore consider only the first case, since the second is
symmetric:

u
¬(A ∧B) ↓

...
¬A ↑

¬A ∨ ¬B ↑
u

¬(A ∧B) ⊃ ¬A ∨ ¬B ↑
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Again, the preceeding rule is determined:

u
¬(A ∧B) ↓

...

v
A ↓

...
⊥ ↑
¬A ↑

¬A ∨ ¬B ↑
u

¬(A ∧B) ⊃ ¬A ∨ ¬B ↑

Now the preceeding rule can only be ⊃ elimination, applied to a subformula
of one of the hypotheses. There is only one candidate:

u
¬(A ∧B) ↓

u
¬(A ∧B) ↓

...

v
A ↓

...
(A ∧B) ↑

⊥ ↑
v¬A ↑

¬A ∨ ¬B ↑
u

¬(A ∧B) ⊃ ¬A ∨ ¬B ↑

The preceeding rule must be ∧ introduction:

u
¬(A ∧B) ↓

v
A ↓
A ↑

u
¬(A ∧B) ↓

...

v
A ↓

...
B ↑

(A ∧B) ↑
v⊥ ↑

¬A ↑
¬A ∨ ¬B ↑

u
¬(A ∧B) ⊃ ¬A ∨ ¬B ↑

Working forwards, we can only apply an elimination rule to ¬(A ∧B):
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u
¬(A ∧B) ↓

v
A ↓
A ↑

u
¬(A ∧B) ↓
¬(A ∧B) ↑

v
A ↓
A ↑

u
¬(A ∧B) ↓

...

v
A ↓

...
B ↑

(A ∧B) ↑
⊥ ↑
B ↑

(A ∧B) ↑
v⊥ ↑

¬A ↑
¬A ∨ ¬B ↑

u
¬(A ∧B) ⊃ ¬A ∨ ¬B ↑

But now we are back where we were a few inferences ago. So, in general, it
is impossible to derive B from ¬(A ∧B) and A.

7 The double-negation translation

We have characterized classical logic as constructive logic together with an
additional rule. So, in a sense, constructive logic is weaker than classical
logic. We will now consider an interpretation of classical logic in constructive
logic that paints an entirely different picture; we will see that, with this
interpretation, one can view classical logic as a subset of constructive logic
that is, in fact, less expressive.

The interpretation is usually referred to as the Gödel/Gentzen double-
negation translation, and was presented independently by these two logicians
in the early 1930’s. It works not only for propositional logic, but also for
predicate logic, which extends propositional logic with the quantifiers “for
all” and “for some.” In fact, Gödel and Genzten originally presented the
translation for first-order arithmetic, which is predicate logic together with
a certain set of axioms for the natural numbers. An earlier version of the
double-negation translation was presented in 1925 by Kolmogorov.

Suppose A is a proposition, expressed in a language with ∧, ∨, ⊃, and ⊥,
and some basic, indecomposable propositions. The double-negation trans-
lations maps A to another proposition, AN , defined recursively as follows:

• AN = ¬¬A, if A is a basic proposition

• ⊥N = ⊥
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• (A ∧B)N = AN ∧BN

• (A ∨B)N = ¬(¬AN ∧ ¬BN )

• (A ⊃ B)N = AN ⊃ BN

Theorem 7.1 The double-negation translation has the following two prop-
erties, for every proposition A:

1. Classically, AN is equivalent to A.

2. If A is provable classically, then AN is provable constructively.

This implies that for every proposition A, A is provable classically if and only
if AN is provable constructively. One can strengthen the second statement:
if A is provable from a set of propositions, S, using classical logic, then AN

is provable from the double-negation translations of the formulae in S, using
constructive logic.

This provides a nice description of the relationship between classical
and constructive logic. Suppose a classical logician claims to have proved a
statement of the form A∨B. The constructive logician examines the proof,
and insists that in fact the classical logician has only proved ¬(¬AN ∧¬BN ).
The classical logician won’t argue with this; as far as he or she is concerned,
the two statements are equivalent. In short, the constructive logician makes
finer distinctions than the classical one; but the constructive logician can
translation the classical viewpoint into his or her own terms.

Notice that the central clause in the translation has to do with the rein-
terpretation of ∨. (For predicate logic, ∃ has to be reinterpreted in a similar
way.) This supports the intuition that the constructive “or” is stronger
than the classical “or”; to a constructive logician, ¬(¬A ∧ ¬B) is weaker
than A∨B. In fact, ¬(¬A∧¬B) is constructively equivalent to ¬¬(A∨B),
from whence the translation gets its name.

8 The relationship between classical and construc-
tive mathematics

Remember that we are thinking of constructive mathematics as consisting
of constructive reasoning about constructively presented mathematical ob-
jects. From the constructive point of view, any presentation of a collection
of mathematical objects should explain how these objects are constructed;
these constructions then dictate the rules for reasoning about them. You
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have already seen some examples, with the cross product and disjoint sum
data types. You will see many more examples as the semester progresses,
including the natural numbers, pairs, lists, trees, and so on.

From the classical point of view it is also desirable to explain how math-
ematical objects are constructed from more basic ones; but the classical
mathematician claims more latitude in these constructions, and the general
structural properties of the set of objects constructed are more important.
For example, classically one can construct the set of real numbers using
Cauchy sequences, as alluded to above. But here one relies on the notion
of an “arbitrary” function, and the end goal is to have an ordered field
satisfying the least upper bound principle.

What can one say about the relationship between classical mathemat-
ics and constructive mathematics? The story is less clear cut than in the
previous section. It turns out that a good deal of modern mathematics has
been developed constructively. Erret Bishop’s book, Foundations of Con-
structive Analysis, published in 1967, was a landmark in that regard. (The
book Constructive Analysis, cited below, is a revised and expanded version,
cowritten with Bishop’s student, Douglas Bridges.) As noted above, many
classical theorems fall by the wayside. For example, some of you may re-
call the intermediate value theorem from calculus: given any continuous
function f defined on the interval [0, 1], if f(0) = −1 and f(1) = 1, then
there is some real number x between 0 and 1 such that f(x) = 0. This
does not hold constructively, but one can prove a weaker statement that
has the same flavor. This characterizes constructive mathematics to a large
extent: it requires more work, and the theorems are not as easy to state; but
the proofs typically have a clear algorithmic content, so even the classical
mathematician usually admits that the proofs yield additional information.

Many parts of classical mathematics, however, have not been developed
constructively. As noted above, Fermat’s last theorem provides an example;
we do not know whether or not this theorem has a constructive proof.

Can we, as we did in the last section, carry out a formal analysis of the
relationship between classical and constructive mathematics? We can, to
the extent that we can find appropriate formal systems that characterize
the two. A collection of axioms known as Zermelo-Fraenkel set theory is
often accepted as a foundational basis for classical mathematics, but it is
awfully difficult to understand these axioms in constructive terms. It turns
out, however, that a good deal of mathematics can be carried out in weaker
theories than set theory, and many of these have been analyzed in classical
terms. Though the classical and constructive viewpoints are very different,
in some respects they can be reconciled.
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9 Constructive logic and computer science

As noted in the introduction, one of the goals of this course is to clarify
the nature of constructive logic, and explore its relationship to computa-
tion. Constructive reasoning is quite general, however, and can be applied
in other domains as well. Later in the course we will see that it is even easy
to incorporate classical reasoning into constructive frameworks, essentially
adding the law of the excluded middle where it is appropriate to the situa-
tion. We will explore numerous applications in computer science, involving
the design of programming languages and the use of logic as a means of
specification and verification.

As this section should make clear, the issues we have been addressing
lie at the intersection of a number of fields, including computer science,
philosophy, and mathematics. Our pursuits join together a philosophical
analysis of constructive logic, a mathematical analysis thereof, and compu-
tational applications, bringing together a number of different perspectives
in an illuminating way.

10 Exercises

1. Show that the proof that there are infinitely many primes, discussed
in Section 2, provides an algorithm for finding a prime number bigger
than N . Is it a good algorithm?

2. Show that given any number N , there is a prime number between N
and N ! + 1. (In fact, it is known that there is always a prime number
between N and 2N , but the proof is more difficult.)

3. Let a = 7590 and let b = 1155. Use the Euclidean algorithm to find
the GCD of a and b, and call it d. Find values of x and y such that
ax+ by = d.

4. If you can, write a computer program that solves GCD problems like
the preceeding one.

5. Fill in the details of the proof that the statement “every bounded
sequence of real numbers has a least upper bound” implies “there is
a function f that solves the halting problem,” sketched in Section 3.
(This is hard!)

6. Show that using the law of the excluded middle, one can derive a
proposition A by deriving ⊥ hypothetically from ¬A. In other words,
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from arbitrary instances of B ∨ ¬B and a proof of ⊥ from ¬A, derive
A.

7. Consider the dual form of the DeMorgan equivalence considered in
Section 6:

¬(A ∨B)↔ (¬A ∧ ¬B).

Which directions are constructively valid?

8. Consider the classically valid equivalence

(A ⊃ B)↔ (¬A ∨B)

(a) Show that the reverse direction is constructively valid; i.e. give a
constructive proof of (¬A ∨B) ⊃ (A ⊃ B)

(b) Show that from ¬(¬A ∨ B) and A ⊃ B one can derive ¬A con-
structively

(c) Show that from ¬(¬A ∨ B) and ¬A one can derive ⊥ construc-
tively

(d) Give a classical proof (using RAA) of the forwards direction of
the equivalence above, i.e. (A ⊃ B) ⊃ (¬A ∨ B). (Hint: using
RAA, it suffices to assume A ⊃ B and ¬(¬A ∨ B) and derive a
contradiction.)

(e) Using the fact that every constructively valid proposition has a
normal proof, show that (A ⊃ B) ⊃ (¬A∨B) is not constructively
valid.

9. Consider the classically valid equivalence:

((A ⊃ B) ∨ (A ⊃ C))↔ (A ⊃ B ∨ C).

(a) Give a constructive proof of the forwards direction.

(b) Give a classical proof of the reverse direction.

(c) Show that the reverse direction is not constructively valid.

10. Show that ¬¬(A ∨B) is constructively equivalent to ¬(¬A ∧ ¬B).

11. If you were the ruler of the world, would you command that math-
ematics be done constructively? Classically? Some other way? Or
would you let mathematicians choose individually?
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Keep in mind that you are paying every mathematician’s salary. (But,
you fear, that banishing mathematics outright might result in a revo-
lution.) As ruler of the world, you can enlist advisors to do research
and gather information to help you make your decision. What kinds
of information would you take into consideration?

Further reading

Further reading on the history and philosophy of mathematical logic, and
the foundations of mathematics:

1. Benacerraf, Paul and and Hillary Putnam, Philosophy of Mathematics:
selected readings, Cambridge University Press, second edition, 1983.

2. van Heijenoort, Jean, From Frege to Gödel: A sourcebook in mathe-
matical logic, 1879–1931, Harvard University Press, 1967.

3. Ewald, William, From Kant to Hilbert: A sourcebook in the founda-
tions of mathematics, Oxford Science Publications, 1996.

Further reading on intuitionism and constructive mathematics:

1. Troelstra, A.S. and Dirk van Dalen, Constructivity in Mathematics:
An Introduction (two volumes), North-Holland, 1988.

2. Beeson, Michael, Foundations of Constructive Mathematics. Springer-
Verlag, 1985.

3. Bishop, Erret and Douglas Bridges, Foundations of Constructive Math-
ematics, McGraw Hill, 1985.

See also the entries on Intuitionistic Logic and Constructive Mathematics in
the online Stanford Encyclopedia of Philosophy, at http://plato.stanford.edu/entries/.
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