Assignment 4 - Extra Credit

Out: Friday Sep 29 Due: Thursday Oct 5

5. More Primitive Recursion over nat (10 Points)

Specify and implement the following functions:

- $half: \mathbf{nat} \to \mathbf{nat}$ with the same semantics as in the lecture. But this time use an auxiliary function $half': \mathbf{nat} \to \alpha \to \mathbf{nat}$ with an extra argument of a suitable type α .
- $div : \mathbf{nat} \to \mathbf{nat} \to \mathbf{nat}$. $div \ n \ m$ computes the quotient n/(m+1).
- $log : \mathbf{nat} \to \mathbf{nat} \to \mathbf{nat}$. $log \ n \ b$ computes the logarithm of n+1 to the base b+2.

6. More Primitive Recursion over list (10 Points)

Specify and implement the following functions:

- $flat: \tau$ list list $\to \tau$ list. The function flat gets a list of lists ll and "flattens" it into a simple list, by concatenating all lists contained in ll. This is to be implemented without the use of append and by looking at every element only once.
- merge: τ list → τ list → τ list. merge xs ys takes the first element of xs, then the first of ys, then the second of xs etc. and puts them into a joint list. If one list is empty already, the remainder of the other list is simply appended.

7. Binary Representation of Natural Numbers (10 Points)

Introduce a new inductive datatype **bnat** for a binary representation of the natural numbers and specify and implement the successor function $bsucc: \mathbf{bnat} \to \mathbf{bnat}$ and addition $badd: \mathbf{bnat} \to \mathbf{bnat}$.

Good luck!