
15-312 Foundations of Programming Languages

Final Examination

December 13, 2004

Name:

Andrew User ID:

• This is an open book, open notes, closed computer exam.

• Write your answer legibly in the space provided.

• There are 18 pages in this exam, including 4 worksheets.

• It consists of 5 problems worth a total of 250 points and one extra credit question
worth 25 points.

• The extra credit is recorded separately, so only attempt this after you have com-
pleted all other questions.

• You have 3 hours for this exam.

• Read the questions carefully before you answer!

Problem 1 Problem 2 Problem 3 Problem 4 Problem 5 Total EC

50 50 55 50 45 250 25

1



1. Continuations (50 pts)

A popular way to compile functional programs (employed in implementations of Scheme
and Standard ML of New Jersey) is to translate them to continuation-passing style. The
basic intuition is that every function is transformed to take one additional argument, its
continuation. Instead of returning a value, the function explicitly passes the return value
to its continuation argument. In this setting, continuations are implemented as ordinary
functions that represent the remainder of the computation, and throwing a value to a
continuation is implemented as a function call.

As a simple example, consider the successor function fn(x.plus(x, num(1))). This might
be compiled to λx. λk. k (x+1) which passes its result (x+1) to its continuation argument
k instead of returning it. Here, and in the rest of the problem we will use abstract syntax
for the source of the translation and mathematical syntax for the target of the translation.

Formally, we define an inductive translation [[e]] k which translates an expression e un-
der a continuation k. The translation of e should pass its value to k, as exemplified in the
first three cases below. For every variable x in the source we have a corresponding vari-
able x̂ in the target. For functions and integers, the translation is defined by the following
cases:

[[num(n)]] k = k n

[[x]] k = k x̂

[[fn(x.e)]] k = k (λx̂. λk1. [[e]] k1)

[[apply(e1, e2)]] k = [[e1]] (λx1. [[e2]] (λx2. x1 x2 k))

At the top-level, the C-machine starts with the empty stack “•”, also called the initial
continuation. In the functional representation, the initial continuation is the identity func-
tion λz. z which returns it argument as the final answer of the computation. We therefore
translate a given expression at the top-level under the initial continuation λz. z. For ex-
ample:

[[apply(fn(x.x), num(3))]] (λz. z)

= [[fn(x.x)]] (λx1. [[num(3)]] (λx2. x1 x2 (λz. z)))

= [[fn(x.x)]] (λx1. (λx2. x1 x2 (λz. z)) 3)

= (λx1. (λx2. x1 x2 (λz. z)) 3) (λx̂. λk. [[x]] k)

= (λx1. (λx2. x1 x2 (λz. z)) 3) (λx̂. λk. k x̂)

2



1.1 (10 pts) Verify, step-by-step using the small-step operational semantics and the re-
sult of the translation above, that

[[apply(fn(x.x), num(3))]] (λz. z) 7→∗ 3

(λx1. (λx2. x1 x2 (λz. z)) 3) (λx̂. λk. k x̂)

7→

The translation to continuation-passing style changes the types of expressions. We
write [τ ]σ for the translation of the type τ , given a final answer type σ, and Γ̂ for the
context that arises from replacing every declaration x:τ in Γ by x̂:[τ ]σ. Then the defining
property of the type translation is

If Γ ` e : τ and Γ′ ` k : [τ ]σ → σ then Γ̂, Γ′ ` [[e]] k : σ.

In other words, when translating [[e]] k then k must accept the value of e (after translation)
and return the final answer of type σ.

1.2 (10 pts) Give the definition of [τ1 → τ2]σ in terms of [τ1]σ and [τ2]σ so that the trans-
lation of functions results in well-typed terms.

[τ1 → τ2]σ =

3



1.3 (15 pts) Extend the translation to pairs by completing the following table. You may
use pairs in the target.

[τ1 × τ2]σ = [τ1]σ × [τ2]σ

[[pair(e1, e2)]] k =

[[fst(e)]] k =

[[snd(e)]] k =

1.4 (15 pts) Translation to continuation-passing style makes it very easy to implement
callcc and throw in the source without using callcc or throw in the target, since con-
tinuations are represented as ordinary functions. For reference, here are the typing
rules for callcc and throw.

Γ, x:τ cont ` e : τ

Γ ` callcc(x.e) : τ

Γ ` e1 : τ Γ ` e2 : τ cont

Γ ` throw(e1, e2) : τ ′

Complete the following definitions. [Hint: use the types as your guide.]

[τ cont]σ = [τ ]σ → σ

[[callcc(x.e)]] k =

[[throw(e1, e2)]] k =

4



2. Object-Oriented Programming (50 pts)

In this question we will examine the correct use of object-oriented constructs. Suppose
we are writing software to handle the routing and shipping of packages. We have various
places that produce packages, and various parties that want consume them. Part of the
declarations in the library shown below:

class Producer of { ... }
class Consumer of { ... }
class Package of { ... }
class RemoteProducer extends Producer of { ... }
class FragilePackage extends Package of { ... }
class RemoteConsumer extends Consumer of { ... }

method deliver(Producer, Package, Consumer) : unit

In this library, we have classes to account for all of the producers, packages, and con-
sumers, and a method which takes one of each to take care of all behavior for one delivery.
Far-away production and consumption sites, and fragile packages may require special
treatment, and so we subclass each of the three base classes.

Suppose a few of our coworkers in this fictional shipping company come to us and tell
us they have finished implementing the method deliver . The code they have written
looks like the following.

extend deliver(p : RemoteProducer, k : Package, c : RemoteConsumer) = ...
extend deliver(p : RemoteProducer, k : Package, c : Consumer) = ...
extend deliver(p : Producer, k : FragilePackage, c : Consumer) = ...

2.1 (10 pts) Given (only) these declarations, will the typechecker (using only the global
checking algorithm described in lecture—don’t worry about the more efficient local
checking techniques) report that the program is vulnerable to a run-time ‘message
not found’ error? (Remember that this is analogous to ML’s ‘nonexhaustive match ex-
ception’) If so, give an example of a method call that will result in this error. You can
write simply {Package: ... }, for example, to indicate an object of class Package,
and similarly with the other five classes.

5



2.2 (15 pts) Given (only) these declarations, will the typechecker report that the program
is vulnerable to a run-time ‘message ambiguous’ error? If so, give an example of a
method call that will result in this error.

2.3 (10 pts) If we add a case

extend deliver(p : Producer, k : Package, c : Consumer) = ...

do one or both of the above answers change? Explain.

6



Now, consider a similar library implemented in Java. The deliver function has be-
come a method of class Producer , and a default implementation is given.

class Producer {
void deliver(Package k, Consumer c) {

...
}

class Consumer { ... }
class Package { ... }
}

A programmer who learned to program in EML might write the following Java code:

class FragilePackage extends Package { ... }
class RemoteConsumer extends Consumer { ... }
class RemoteProducer extends Producer {

void deliver(Package p, Consumer c) { ... /* (1) default */ }
void deliver(FragilePackage p, Consumer c) { ... /* (2) fragile */ }
void deliver(Package p, RemoteConsumer c) { ... /* (3) remote */ }
void deliver(FragilePackage p, RemoteConsumer c) { /* (4) fragile and

remote */ }
}

2.4 (15 pts) If our client writes the following code

Producer p = new RemoteProducer(...);
Package k = new FragilePackage(...);
Consumer c = new RemoteConsumer(...);
p.deliver(k,c);

Which of (1),(2),(3),(4) gets executed? Is this the right behavior? If not, explain how
the implementation of deliver can be fixed.

7



3. Monads and Subtyping (55 pts)

Monads are an important device to isolate effects in a pure functional language. For ref-
erence, here are the generic constructs for monads, independent of any particular notion
of effect.

Types τ ::= · · · | ©τ
Pure Expressions e ::= · · · | comp(m)

Monadic Expressions m ::= e | letcomp(e, x.m)

In concrete syntax we may write let comp x = e in m end for letcomp(e, x. m). Recall
the following typing rules, which include the new judgment Γ ` m ÷ τ for monadic
expressions

Γ ` e : τ
Γ ` e÷ τ

Γ ` m÷ τ
Γ ` comp(m) : ©τ

Γ ` e : ©τ Γ, x:τ ` m÷ σ

Γ ` letcomp(e, x. m)÷ σ

and recall that comp(m) is a value.
In this problem we explore if subtyping could be used to reduce the syntactic over-

head of programming with monads. For this set of questions, we adopt the coercion
interpretation of subtyping. For each of the proposed rules, state whether it satisfies the
Fundamental Principle of Subtyping discussed in lecture or not. If it does, write out the
omitted coercion f .

3.1 (10 pts)

f : ©τ ≤ τ

Satisfies FPS? (circle one) Yes No

If yes, coercion f =

3.2 (10 pts)

f : τ ≤ ©τ

Satisfies FPS? (circle one) Yes No

If yes, coercion f =

8



3.3 (15 pts)

f : ©©τ ≤ ©τ

Satisfies FPS? (circle one) Yes No

If yes, coercion f =

3.4 (15 pts)
g : τ ≤ σ

f : ©τ ≤ ©σ

Satisfies FPS? (circle one) Yes No

If yes, coercion f =

3.5 (5 pts) Would your answers to the questions above change for a particular monad
such as, for example, the store monad? Explain very briefly.

9



4. Program Equivalence (50 pts)

Our definition of equivalence for functional programs in a call-by-value language distin-
guishes between equivalence e ∼= e′ : τ on expressions and v ' v′ : τ on values. Recall the
following clauses in their definition.

e ∼= e′ : τ iff either e diverges and e′ diverges
or e 7→∗ v and e′ 7→∗ v′ with v ' v′ : τ

v ' v′ : int iff v = v′ = n for an integer n.
v ' v′ : τ1 → τ2 iff for all v1 ' v′1 : τ1 we have v v1

∼= v′ v′1 : τ2

4.1 (10 pts) Our definition is not appropriate for a call-by-name language. Give two
functions which would be considered equal by the definition above, yet behave
differently in a call-by-name language. You may use functions, integers (including
primitive operations as needed), and recursion.

4.2 (10 pts) Returning to the case of a call-by-value language, add an appropriate clause
for sums, τ1 + τ2.

v ' v′ : τ1 + τ2 iff

10



In the remainder of this problem we consider the output monad with one additional
form of monadic expression, write(e), which evaluates the expression e to an integer,
writes the result to the output stream and also returns it.

Γ ` e : int
Γ ` write(e)÷ int

The rules in the small-step operational semantics for monadic expressions then have the
form 〈s, m〉 7→ 〈s′, m′〉 where s and s′ represent the output stream as a potential infinite
sequence of integers.

4.3 (10 pts) Give the transition rule(s) for the new write construct in a small-step opera-
tional semantics. You do not need to repeat the generic monad rules.

4.4 (20 pts) We extend the definition of observational equivalence to include monadic
expressions with a new judgment, 〈s, m〉 ∼= 〈s′, m′〉 ÷ τ . Complete the following
definitions, assuming that we can observe the output of a computation only when
it terminates.

〈s, m〉 ∼= 〈s′, m′〉 ÷ τ iff

v ' v′ : ©τ iff

11



4.5 (25 pts extra credit) Revise your definition in question 4.4 under the assumption
that we can observe the output of non-termination computations as they proceed.

12



5. Bisimulation (45 pts)

Consider the following three process definitions.

P = a.P + b.a.P + a.a.P
Q = a.Q1 + τ.Q1 where Q1 = b.a.Q + τ.Q
R = a.R + b.a.R
S = a.S | b.a.S

In each of the following cases indicate whether a weak bisimulation exists or not. If it
does, give the bisimulation, making additional process definitions if necessary. [Hint: it
may be helpful to draw some labeled transition graphs.]

5.1 (15 pts) P ≈ Q? Circle one: Yes No

If yes, show the weak bisimulation:

5.2 (15 pts) Q ≈ R? Circle one: Yes No

If yes, show the weak bisimulation:

13



5.3 (15 pts) R ≈ S? Circle one: Yes No

If yes, show the weak bisimulation:

14



Worksheet

15



Worksheet

16



Worksheet

17



Worksheet

18


