
15-312 Foundations of Programming Languages

Recitation 11: Java and EML

Daniel Spoonhower
spoons+@cs

November 12, 2003

1 Comparing Java and EML

Today, in order to understand the similarities and differences of Java and EML,
we’ll translate a ordinary piece of Java code into EML. Our example will be an
implementation of a MinML interpreter, so the purpose of the following code
should be clear to you. We will begin by considering the implementation of
de Bruijn translation.

abstract class Exp
{
abstract Exp translate (Ctx ctx);

}

interface Ctx
{
void bind (String name);
int lookup (String name);
void unbind ();

}

class NamedVar extends Exp
{
String name;
Exp translate (Ctx ctx)
{
return new DBVar (ctx.lookup(name));

}
}

1



class DBVar extends Exp
{
int index;
DBVar (int i) { index = i; }
Exp translate (Ctx ctx) { return this; }

}

// fn(t, x.e)
class Fn extends Exp
{
Typ typ;
String var;
Exp body;

Exp translate (Ctx ctx)
{
ctx.bind(var);
Exp b = body.translate (ctx);
ctx.unbind();
return new Fn (typ, var, b);

}
}

You might claim that this definition of Fn.translate is not “reasonable”
for a Java programmer: why should we create a whole new Fn object when we
already have a perfectly good one (i.e. this)? For now, take the example as
it stands; we’ll make a bit more realistic in a few minutes. Here’s my EML
translation:

abstract class Exp of {};
abstract class Typ of {};

class NamedVar extends Exp of { name:string };
class DBVar extends Exp of { index:int };
class Fn extends Exp of { typ:Typ, var:string, body:Exp };

abstract class Ctx of {};
fun lookup : (Ctx * string) -> int;
fun bind : (Ctx * string) -> unit;
fun unbind : (Ctx) -> unit;

fun translate : (Exp * Ctx) -> Exp;

extend fun translate (e as NamedVar {name=n}, ctx) =
DBVar (lookup (ctx, n));

extend fun translate (e as DBVar, ctx) = e;

2



extend fun translate (e as Fn {typ=t, var=v, body=b}, ctx) =
(bind (ctx, v);
let b’ = new Fn(v, translate (b, ctx)) in
unbind ctx;
Fn (t, v, b’)

end);

Now let’s reconsider Fn.translate. As a Java programmer, I would proba-
bly write the following implementation.

Exp translate (Ctx ctx)
{
ctx.bind(var);
body = body.translate (ctx);
ctx.unbind();

}

How would we translate this code? We might have been mistaken in our trans-
lation of the Fn class itself; perhaps this definition will suit us better.

class Fn extends Exp of { typ:Typ, var:string, body:Exp ref };

Now what does our translation of Fn.translate look like? Generally speaking,
when should we use τ ref as the type of a field rather than τ?

Now let’s say that, having completed our de Bruijn translation, we would like
to implement a typechecker, and since we will probably use types later in our
implementation,1 we would like to keep them around. Consider the following
changes to our interpreter.

abstract class Exp
{
Typ typ;
abstract Exp translate (Ctx ctx);
// For some type environment env, set the type of this
// expression.
void typecheck (Env env);

}

How must our definition of Fn change? In particular, think about field shadow-
ing. Now take this implementation of typechecking for functions.

1Think about when types will be useful.

3



class Fn extends Exp
{
...
void typecheck (Env env)
{
// Assumes variables have been converted to de Bruijn indices
env.extend (typ);
body.typecheck (env);
env.retract();
super.typ = new Arrow (typ, body.typ);

}
}

How can we translate this into EML? What’s different about Exp.typ (as com-
pared to DBVar.index)? Hint: think about how we’d represent the Java con-
struct null.

4


