15-312 Foundations of Programming Languages
Recitation 11: Java and EML

Daniel Spoonhower
spoons+Q@cs

November 12, 2003

1 Comparing Java and EML

Today, in order to understand the similarities and differences of Java and EML,
we’ll translate a ordinary piece of Java code into EML. Our example will be an
implementation of a MinML interpreter, so the purpose of the following code
should be clear to you. We will begin by considering the implementation of
de Bruijn translation.

abstract class Exp

abstract Exp translate (Ctx ctx);
}
interface Ctx

void bind (String name);
int lookup (String name);
void unbind ();

}

class NamedVar extends Exp
{
String name;
Exp translate (Ctx ctx)
return new DBVar (ctx.lookup(name));
}



class DBVar extends Exp
{
int index;
DBVar (int i) { index = i; }
Exp translate (Ctx ctx) { return this; }

}

// fn(t, x.e)
class Fn extends Exp
{

Typ typ;

String var;

Exp body;

Exp translate (Ctx ctx)
{
ctx.bind(var) ;
Exp b = body.translate (ctx);
ctx.unbind () ;
return new Fn (typ, var, b);

}
}

You might claim that this definition of Fn.translate is not “reasonable”
for a Java programmer: why should we create a whole new Fn object when we
already have a perfectly good one (i.e. this)? For now, take the example as
it stands; we’ll make a bit more realistic in a few minutes. Here’s my EML
translation:

abstract class Exp of {};
abstract class Typ of {};

class NamedVar extends Exp of { name:string };
class DBVar extends Exp of { index:int };
class Fn extends Exp of { typ:Typ, var:string, body:Exp };

abstract class Ctx of {};

fun lookup : (Ctx * string) -> int;
fun bind : (Ctx * string) -> unit;
fun unbind : (Ctx) -> unit;

fun translate : (Exp * Ctx) -> Exp;

extend fun translate (e as NamedVar {name=n}, ctx) =
DBVar (lookup (ctx, n));
extend fun translate (e as DBVar, ctx) = e;



extend fun translate (e as Fn {typ=t, var=v, body=b}, ctx) =
(bind (ctx, v);
let b’ = new Fn(v, translate (b, ctx)) in
unbind ctx;
Fn (t, v, b’)
end) ;

Now let’s reconsider Fn.translate. As a Java programmer, I would proba-
bly write the following implementation.

Exp translate (Ctx ctx)

{
ctx.bind(var) ;
body = body.translate (ctx);
ctx.unbind () ;

}

How would we translate this code? We might have been mistaken in our trans-
lation of the Fn class itself; perhaps this definition will suit us better.

class Fn extends Exp of { typ:Typ, var:string, body:Exp ref };

Now what does our translation of Fn.translate look like? Generally speaking,
when should we use 7 ref as the type of a field rather than 77

Now let’s say that, having completed our de Bruijn translation, we would like
to implement a typechecker, and since we will probably use types later in our
implementation,! we would like to keep them around. Consider the following
changes to our interpreter.

abstract class Exp

{
Typ typ;
abstract Exp translate (Ctx ctx);
// For some type environment env, set the type of this
// expression.
void typecheck (Env env);

}

How must our definition of Fn change? In particular, think about field shadow-
ing. Now take this implementation of typechecking for functions.

I Think about when types will be useful.



class Fn extends Exp

{

void typecheck (Env env)
{
// Assumes variables have been converted to de Bruijn indices
env.extend (typ);
body .typecheck (env);
env.retract();
super.typ = new Arrow (typ, body.typ);

}
}

How can we translate this into EML? What’s different about Exp.typ (as com-
pared to DBVar.index)? Hint: think about how we’d represent the Java con-
struct null.



