
15-312 Foundations of Programming Languages

Recitation 10: Type Checking and Type Inference

Daniel Spoonhower
spoons+@cs

November 5, 2003

1 Type Checking

Today, we will consider a number of examples related to type checking, mostly
concerning those constructs for introducing and eliminating expressions of sum
type. To warm up, review the cases for ordinary type synthesis:

Γ ` e1 : τ1
Γ ` inl(τ2, e1) : τ1 + τ2

Γ ` e : τ1 + τ2 Γ, x1 : τ1 ` e1 : σ Γ, x2 : τ2 ` e2 : σ′ σ = σ′

Γ ` case(e, x1.e1, x2.e2) : σ

What happens when we add subtyping to this system?
Speaking of subtyping, in the course of assigning types in the context of sub-

typing we came upon a problem, specifically, with the transitivity of subtyping.

τ ≤ σ σ ≤ ρ
τ ≤ ρ Trans

What mode would we like to assign to the subtyping judgment? Why doesn’t
that work in this case?

Instead of continuing with our original formulation of subtyping, we instead
move forward with algorithmic subtyping, a less ambitious variation. Recall that
once we defined algorithmic subtyping, we proved the following lemma.

Lemma 1 (Transitivity of Algorithmic Subtyping). If τ v σ and σ v ρ
then τ v ρ.

What’s the difference between this statement and the inference rule above?
If we specifically avoided adding a rule for transitivity to algorithmic subtyping,
why did we immediately prove that it is true?

Since we can prove that transitivity holds for algorithmic subtyping, adding
such a rule would be redundant, but before we continue, it’s worth taking a
moment to understand how this rule would be redundant. In some cases, a rule

1

is redundant simply because it is the composition of existing rules; here we say
that the rule is derivable. In other cases, there is no such derivation, but we
can, nonetheless prove the following: that the conclusion is derivable under no
premises whenever the premises are derivable under no premises. In this latter
case, we say that a rule is admissible.

Here’s another (albeit simple) example using a standard inductive definition
of natural numbers.

n nat
succ(succ(n)) nat

succ(n) nat

n nat

Notice that the statement on the left is derivable: it can be proved using two ap-
plications of the successor rule. The rule on the right, however, is not derivable.
(Convince yourself that this is true.) It is, however, admissible: the bottom
judgment is derivable under no premises whenever the top is derivable under no
premises. (Prove this!)

2 Type Inference

Back in our discussion of sums, note that in the bidirectional case, the notion
of a least upper bound (as used in type checking above) is unnecessary (since
we must only check each expression against σ).

Γ ` e1 ↑ τ1
Γ ` inl(τ2, e1) ↑ τ1 + τ2

Γ ` e ↑ τ1 + τ2 Γ, x1 : τ1 ` e1 ↓ σ Γ, x2 : τ2 ` e2 ↓ σ
Γ ` case(e, x1.e1, x2.e2) ↓ σ

In bidirectional typing, however, we still had to include the type of the other
half of the sum (e.g. inl(τ2, e1)). In full type inference this is not necessary.
Recall our judgment for full type inference, shown here with modes attached.

Γ+ ` e+ =⇒ τ− | C−

In the full inference system, we can write the injection expression without
any type.

Γ ` e =⇒ τ1 | C (α2 new)
Γ ` inl(e) =⇒ τ1 + α2 | C

Γ ` e =⇒ τ | C (α, α2 new) Γ, x1 : α1 ` e1 =⇒ σ | C1 Γ, x2 : α2 ` e2 =⇒ σ′ | C2

Γ ` case(e, x1.e1, x2.e2) =⇒ σ | C,C1, C2, τ
.= α1 + α2, σ

.= σ′

In order to verify your understanding of type inference, show how our infer-
ence system derives a set of constraints and then solves them to find a type for
the following expression:

case inl 7
of inl(x) => 3 + x
| inr(f) => f 4

2

2.1 The Value Restriction

In lecture, we noted some of the difficulties related to using let constructs in
a language with full type inference. Does that discussion shed any light on the
following type error?

- val empty = ref nil;
stdIn:22.2-22.21 Warning: type vars not generalized because of

value restriction are instantiated to dummy types (X1,X2,...)
val empty = ref [] : ?.X1 list ref

3

