
15-312 Foundations of Programming Languages

Recitation 9: More on Storage

Daniel Spoonhower
spoons+@cs

October 29, 2003

1 Assignment 5

First, note a couple of common mistakes.
In the general monadic framework, we have two forms of transitions,

e 7→ e′

〈w,m〉 7→ 〈w′,m′〉

The first is for pure expressions, and the second for monadic expressions. In
lecture, we discussed a monadic formulation of mutable store, so our worlds
w took the form of maps M from locations to values called stores. In this
assignment, we are attempting to model input and output, and so our worlds
correspond to states of the inputs and output streams. While stores could
contain values of different types, our input and output streams contain only
integers. So while we required a context Λ for giving types to each location in
the store, we don’t require any context for the input and output.

Second, despite my warnings about verifying that your programs typecheck,
many people submitted programs that did not.

if eof then ...

However, recall the typing rule for if:

Γ ` e : bool · · ·
Γ ` if(e, e1, e2) : τ

And our typing rule for eof,

Γ ` eof÷ bool

In other words, if expects a pure expression of type bool, not a monadic
expression, such as eof.

1

2 More on the G Machine

Recall our transition rules for the G machine.

(Hf [l = V], S ∪ {l},Ht) 7→g (Hf , S ∪ FLLV(V),Ht[l = V])
Copy

(Hf , S ∪ {l},Ht[l = V]) 7→g (Hf , S,Ht[l = V]) Discard

We would like some assurance that our collector is doing the right thing. First,
we would like to show that it terminates, but before we do that, we should take
note of the following fact.

Theorem 1 (Consistency). For all l ∈ dom(H), either l ∈ Hf or l ∈ Ht but
not both.

Proof. By inspection of the transition rules for the G machine.

Notice that we begin with Hf = H and Ht = ∅, so the condition is clearly true
when we invoke the G machine. Then note that the first rule moves a location
l from Hf to Ht, while the second rule leaves both Hf and Ht unchanged.

Theorem 2 (Termination). For well-formed H, k, η and e, the G machine
terminates in a finite number of steps.

Proof. By induction on the sizes of Hf and S, ordered lexicographically. (Noting
that the state of our machine is always, by construction, of finite size.)

Case Hf = ∅ and S = ∅. Then the algorithm terminates, as we have finished
as soon as S = ∅.

Case Hf = ∅ and S = S′ ∪ {l}. In this case only the second rule applies,
in which case we decrease the size of the scan set by one. By applying the
induction hypothesis with Hf and S′, we see that the algorithm terminates.

Case Hf = H ′f [l = V] and S = ∅. Again, since S is empty, the algorithm has
finished.

Case Hf = H ′f [l = V] and S = S′ ∪ {l′}. Both rules might apply, but
according to our previous theorem, a given location l appears in exactly one of
Hf and Ht.

• Subcase Copy. In this case the size of the from-space is decreasing by
one, so (regardless of changes to the scan set) we can apply the induction
hypothesis and conclude that the algorithm terminates.

2

• Subcase Discard. Here the size of Hf remains the same, while the size of
the scan set decreases by one. Again, we apply the induction hypothesis
with Hf and S′ and conclude that the algorithm terminates.

In describing termination, we required that the machine state be “well-
formed” but we haven’t yet defined well-formed. We will use the judgment
“s ok” to indicate that a machine state s is properly constructed and well-typed.
This judgment will be expanded in the proof below.

In order to proof preservation, we will need to give a type to each location;
just as we gave a type to locations in our description of references we will add
a new type to describe locations in the heap and a form of typing to describe
the heaps themselves.

(types) τ ::= . . . | τ loc
(heap typing) Λ ::= · | Λ, l : τ

In the small part of the proof we will see below, we will also need a few specific
rules about frames that manipulate locations and about the heap.

fst(�) : (τ1 ∗ τ2) loc→ τ1 frame

(l : τ) ∈ Λ H : Λ (l = V) ∈ H
Λ; · ` V : τ

(l : τ) ∈ Λ
Λ; Γ ` l : τ loc

Finally, we will need to extend our value inversion lemma with the following
clause:

• If v value and Λ; · ` v : τ loc then v = l for some location l and (l : τ) ∈ Λ.

Our statement of preservation will be similar to that for the E machine.

Theorem 3 (Preservation). If s ok and s 7→a s
′ then s′ ok.

Proof. By rule induction on the derivation of s 7→a s
′.

We will consider just one case, the case for fst.

H[l = pair(v1, v2)] | k . fst(�) | η < l 7→a H[l = pair(v1, v2)] | k | η < v1
Fst

Case Fst s = H[l = pair(v1, v2)] | k . fst(�) | η < l
s′ = H[l = pair(v1, v2)] | k | η < v1

s ok Assumption
η : Γ Definition of s ok*
H[l = pair(v1, v2)] : Λ ”*
Λ; Γ ` k . fst(�) : τ stack ”

3

l value ”
Λ; · ` l : τ ”
Λ; Γ ` k : τ1 stack Inversion on stack typing*
Λ; Γ ` fst(�) : τ → τ1 frame ”
τ = (τ1 ∗ τ2) loc Inspection of frame typing rule
l is a location and (l : τ1 ∗ τ2) ∈ Λ By value inversion
Λ; · ` pair(v1, v2) : τ1 ∗ τ2 By rule
v1 value By construction of pairs*
Λ; · ` v1 : τ1 Inversion on pair typing*
s′ ok From the marked statements above

Finally, we would also like to know that our A machine preserves the meaning
of programs according to our previous definitions of the dynamic semantics of
MinML. To do so, we will need to show, for example, that for each step taken
by a the E machine is simulated by one or more steps of the A machine.

4

