15-312 Foundations of Programming Languages
Recitation 7: Recursive Types

Daniel Spoonhower
spoons+Q@cs

October 8, 2003

1 Another Recursive Type

First, we’ll consider another datatype with which you have some experience.

datatype exp =
Num of int
| Plus of exp * exp

As should be obvious, this datatype represents expressions of a simple arithmetic
language. How would we write the type for this datatype (as we discussed
yesterday in lecture)? We could start with a sum:

int + (exp * exp) ?

Of course exp is the type that we are trying to define! So we need to use a
recursive type and replace our uses of exp with instances of the recursive (type)
variable.

exp = pt.int + (¢ X t)

What are some examples of values of this datatype (as we’d write them in SML)?
Consider Num(5), Plus (Num(3),Num(4)), and

Plus (Plus (Num(2),Num(4)),Num (7))

How would we write these values using our recursive type? A first attempt
might look like in1(5). (Why is this not correct?) Here are two examples of
what we are really looking for:

roll(inl(5)) roll (inr(pair(roll(inl(3)),roll(inr(4)))))

(Can you give the translation of the last example?) What are the constructors
for exp? (What are their types?) Think about it before you turn the page.

Num : int — exp
= fnn:int =>roll(inl(n))
Plus : exp — exp — exp
= fnx:exp=>fny:exp =>roll(inr(pair(x,y)))

What about the destructor? Give its type and implementation.

2 More On Datatypes

Using sum types, existential types and parametric polymorphism, we can also
build a 7 option, just as it appears in Standard ML.

datatype ’a option = NONE | SOME of ’a

What type would we give to this datatype? Perhaps something like,
Vil+t

We might also write this as Vi.uu.t 4+ 1, but the u is unused, and (as you will
remember from lecture) the implementation of the datatype is hidden from the
user anyway; we’ll see more on this in a moment. What are the types and
implementations for the constructors and the case function?

As we’ve just mentioned, SML datatypes are abstract: they hide their im-
plementation from users. How might we use an existential type to hide our
implementation?

option =Vt.Ju.u x (t —u) xVsu— (1= 38) = (t—s)—s

Notice that the second constructor and the case naturally share the type pa-
rameter t. An implementation of this datatype might look something like:

Fn t => pack(l + ¢,pair(inl(()),pair(fn x:t => inr(x),...))

3 More on Recursion

In lecture yesterday, we saw the type w, the type of function which can be
applied to itself. Recall,

w=uputt—1
(roll(fnx:w => unroll(x) z)) : w

We might read the type w (in unrolled form) as “given a function that might be
applied to itself, return a function that might be applied to itself.” While w is
certainly a curiosity, we can do something more useful with one of its relatives:

Vs.ut.t — s

Below, we will consider one particular instance of this type,
pt.t — int — int

Before we continue, remember our implementation of the factorial function:

rec fact : int -> int =>
fn x : int =>
if x = 0 then 1
else x * fact (x - 1)
fi

The rec construct allows us to make an assumption (in the body of the ex-

pression) about the existence of a function from int to int. (Then after we've

typechecked the body, we confirm that it really has the type we assumed.)
Let’s make a similar assumption. Let £ be a variable of type

pt.t — int — int

We'd like £ to stand for a “recursively defined function from int to int,” but
we can’t apply f as it stands. Instead, we must first unroll it:

unroll(f) : ¢t — int — int

We can apply the unrolled version, but only to expressions of our recursive type,
for example f£.

(unroll(f) f): int — int

Excellent! We are almost ready to write our rec-less version of factorial. First,
we must recognize that £ must be bound somewhere; we add an additional
function abstraction to pass it in.

fn £ : pt. t -> int -> int =>
fn x : int =>
if x = 0 then 1
else x * (unroll(f) f) (x - 1)
fi

(What’s the type of this expression?) Finally, we’d like to write a function of
type int — int (rather than expose users to all of this roll/unroll syntax). How
do we form such an expression? Call the above expression F. Then we can write:

let fact = F roll(F) in
fact 5
end

(Verify to yourself that this indeed is the expression we want.)

Next Week

Next week’s recitation will be a review for the midterm. Being any questions
you have about the material we’ve covered so far.

