
15-312 Foundations of Programming Languages

Recitation 7: Recursive Types

Daniel Spoonhower
spoons+@cs

October 8, 2003

1 Another Recursive Type

First, we’ll consider another datatype with which you have some experience.

datatype exp =
Num of int

| Plus of exp * exp

As should be obvious, this datatype represents expressions of a simple arithmetic
language. How would we write the type for this datatype (as we discussed
yesterday in lecture)? We could start with a sum:

int + (exp ∗ exp) ?

Of course exp is the type that we are trying to define! So we need to use a
recursive type and replace our uses of exp with instances of the recursive (type)
variable.

exp = µt.int + (t× t)

What are some examples of values of this datatype (as we’d write them in SML)?
Consider Num(5), Plus(Num(3),Num(4)), and

Plus(Plus(Num(2),Num(4)),Num(7))

How would we write these values using our recursive type? A first attempt
might look like inl(5). (Why is this not correct?) Here are two examples of
what we are really looking for:

roll(inl(5)) roll(inr(pair(roll(inl(3)),roll(inr(4)))))

(Can you give the translation of the last example?) What are the constructors
for exp? (What are their types?) Think about it before you turn the page.

1



Num : int→ exp
= fn n : int => roll(inl(n))

Plus : exp→ exp→ exp
= fn x : exp => fn y : exp => roll(inr(pair(x,y)))

What about the destructor? Give its type and implementation.

2 More On Datatypes

Using sum types, existential types and parametric polymorphism, we can also
build a τ option, just as it appears in Standard ML.

datatype ’a option = NONE | SOME of ’a

What type would we give to this datatype? Perhaps something like,

∀t.1 + t

We might also write this as ∀t.µu.t + 1, but the u is unused, and (as you will
remember from lecture) the implementation of the datatype is hidden from the
user anyway; we’ll see more on this in a moment. What are the types and
implementations for the constructors and the case function?

As we’ve just mentioned, SML datatypes are abstract: they hide their im-
plementation from users. How might we use an existential type to hide our
implementation?

option = ∀t.∃u.u× (t→ u)× ∀s.u→ (1→ s)→ (t→ s)→ s

Notice that the second constructor and the case naturally share the type pa-
rameter t. An implementation of this datatype might look something like:

Fn t => pack(1 + t, pair(inl(()),pair(fn x:t => inr(x), . . . ))

3 More on Recursion

In lecture yesterday, we saw the type ω, the type of function which can be
applied to itself. Recall,

ω = µt.t→ t
(roll(fn x : ω => unroll(x) x)) : ω

We might read the type ω (in unrolled form) as “given a function that might be
applied to itself, return a function that might be applied to itself.” While ω is
certainly a curiosity, we can do something more useful with one of its relatives:

∀s.µt.t→ s

2



Below, we will consider one particular instance of this type,

µt.t→ int→ int

Before we continue, remember our implementation of the factorial function:

rec fact : int -> int =>
fn x : int =>
if x = 0 then 1
else x * fact (x - 1)
fi

The rec construct allows us to make an assumption (in the body of the ex-
pression) about the existence of a function from int to int. (Then after we’ve
typechecked the body, we confirm that it really has the type we assumed.)

Let’s make a similar assumption. Let f be a variable of type

µt.t→ int→ int

We’d like f to stand for a “recursively defined function from int to int,” but
we can’t apply f as it stands. Instead, we must first unroll it:

unroll(f) : t→ int→ int

We can apply the unrolled version, but only to expressions of our recursive type,
for example f.

(unroll(f) f) : int→ int

Excellent! We are almost ready to write our rec-less version of factorial. First,
we must recognize that f must be bound somewhere; we add an additional
function abstraction to pass it in.

fn f : µt. t -> int -> int =>
fn x : int =>
if x = 0 then 1
else x * (unroll(f) f) (x - 1)
fi

(What’s the type of this expression?) Finally, we’d like to write a function of
type int→ int (rather than expose users to all of this roll/unroll syntax). How
do we form such an expression? Call the above expression F. Then we can write:

let fact = F roll(F) in
fact 5

end

(Verify to yourself that this indeed is the expression we want.)

3



Next Week

Next week’s recitation will be a review for the midterm. Being any questions
you have about the material we’ve covered so far.

4


