15-312 Foundations of Programming Languages
Recitation 6: Continuations

Daniel Spoonhower
spoons+Q@cs

October 1, 2003

1 Homework Solution

Review the solution to Assignment 3. Be sure you understand (in general)
what sorts of programs constitute counterexamples to progress and preservation.
Furthermore, be sure you understand the counterexample in the case of lazy
MinML.

(In recitation, we will also touch (ever so briefly) on another issue raised by
the alternative CaseTyp’ rule, the decidability of typechecking. Finally, we will
discuss the differences between call-by-value and call-by-name semantics for our
pure functional language.)

2 Continuations

We began discussion of continuations last week in lecture; we will continue today
with a pair of more detailed examples, both borrowed from Harper’s notes.

2.1 Review

Recall the static semantics of our constructs for manipulating continuations.

axrke:T I'kFe:mm T'kes:m cont

'k letccrineend: 7 It throw|[r]ejtoes : T

Remember that letcc binds the current continuation to a variable and then
continues evaluation, while throw evaluations an expression and then continues
at the point of evaluation marked by the second expression.

2.2 Short Circuiting Evaluation

Consider the following function that computes the product of the elements in
an integer list.

fun mul(l : int list) : int =>
case 1
of nil => 1
| x::1 =>x * mul 1

Note that if the list contains the element 0, this function might perform a
significant amount of extra work, particularly if the 0 appears near the beginning
of the list. We might consider a short-circuited version of multiplication, one
where we stop inspecting the remainder of the list once we encounter a 0.

fun mul(l : int list) : int =>
case 1
of nil => 1
| x::1 =>4if x = 0 then O
else x * mul 1 fi

If we expect a list of length n to have exactly one 0 (distributed uniformly),
we’ve reduced the (expected) number of recursive calls by n/2. We are still,
however, performing n/2 multiplications (again, expected case), each of whose
result will be 0. We’d like to jump out the entire sequence of recursive calls,
not just the current one.

For reasons that will become clear in a moment, we first transform the
function by n-expansion:

fn 1 : int list =>

let mul = fun mul(l : int list) : int =>

case 1

of nil => 1
| x::1 =>if x = 0 then O
else x * mul 1 fi

in

mul 1
end

Now, using the letcc and throw constructs from above, we can write

fn 1 : int list =>
letcc ret in
let mul = fun mul(l : int list) : int =>
case 1
of nil => 1
| x::1 => if x = 0 then throw 0 to ret
else x * mul 1 fi
in
mul 1
end
end

In this example, we are throwing a value backward to a previous point in
evaluation, and moreover, we don’t really use ret for anything particularly
interesting. We could have easily written a similar short-circuiting function
using exceptions. Next, we’ll see an example where that is definitely not the
case.

2.3 Composition

Remember that continuations are values: even though we can’t write a value of
type 7 cont in the concrete syntax, they may be manipulated just like any other
value.

We’d like to write a function compose that combines a function with a con-
tinuation, resulting in a new continuation. Specifically, a function with the
following type. (Why does this make sense?)

compose : (7' -> 7) -> 7 cont -> 7’ cont

We begin as follows:

fnf : 7/ -> 7 =>fn k : 7 cont =
Now what do we do? Let’s inspect the types and see what we can do.

throw[?] (something of type 7) to k
£ (applied to something of type 7’)

Finally, we know we want to return a value of type 7’ cont, and there is only
one way to create such a value:

letcc k’ in (something of type 7/) end

Let’s start from the end and work backwards. The k’ above holds the value
we’d like to return, but we can’t simply write

letcc k’ in k’ end

(Remember from lecture that such an expression is not well-typed.)
So how else can we save the continuation (and return it later)? Well, the
only other thing we can do with a continuation is to throw it!

letcc k’ in throw[7’] k’ to ? end

(Why do we give the throw expression type 7'?) Of course, we need somewhere
to throw this continuation, so let’s use another letcc.

letcc ret in ... letcc k’ in throw[7’] k’ to ret end end

Now that we have captured the continuation we want, let’s go back and consider
what we’d do if someone actually threw to it. First we’d apply £:

letcc ret in ... f (letcc k’ in throw[7’] k’ to ret end) end

What remains? We have only to throw some value of type 7 to k. The result
of the application of f is just such value.

fnf : 7 -> 7= fnk : 7 cont =>
letcc ret in
throw[7 cont] f (letcc k’ in throw[7’] k’ to ret end) to k
end

(Convince yourself that this function typechecks. What’s the type of ret?
Finally, does compose ever return? Did we ever expect it to?)
Clearly, we could not accomplish a feat such as compose with exceptions!

