
15-312 Foundations of Programming Languages

Recitation 4: Run-time Errors

Daniel Spoonhower
spoons+@cs

September 17, 2003

1 Accounting For Errors

In lecture this week, we saw a number of extensions to MinML, including sums
and pairs. Here, we will explore in more detail another extension from lecture:
run-time errors. To do so we will add another primitive operator over integers,
division. Unlike addition, subtraction, and multiplication, the division of in-
tegers is a partial function. That is, it does not yield a result for all possible
inputs. In particular, consider the expression div(num(2), num(0)). We would
like to include division in our type-safe language, but so far we have no way of
accounting for what “happens” when we evaluate a division by zero.

(One possibility is to add an additional value of type int that is the result
of such an expression. This value is sometimes called “NaN” or “not-a-number”
when it appears in specifications of floating-point arithmetic. If we were to do
so, however, we would have other problems to consider; for example, what is
the result of num(1) = NaN?)

1.1 Stuck Made Explicit

We will add a new expression to our language, shown below, to capture this
state. (This expression is also sometimes known wrong or as the “stuck state.”)

e ::= . . . | error

(Is error a value? Why or why not? It may become more clear when we
introduce a typing rule for error below.)

With error in hand, we can give an evaluation rule that applies to the
expression above.

div(num(k), num(0)) 7→ error
DivZero

We haven’t quite finished with evaluation yet, however: consider the follow-
ing expression:

if(div(num(2), num(0)), . . . ) 7→ if(error, . . . ) 7→ ?

1



Even though we’ve made progress with division, we still are stuck at the if.
We will need to add new rules to propagate errors through all of our existing
constructs. Analogously to our search evaluation rules, we add:

apply(error, e2) 7→ error
v1 value

apply(v1, error) 7→ error

if(error, e1, e2) 7→ error let(error, x.e) 7→ error

vi value

add(v1, . . . , vj−1, error, ej+1, . . . ) 7→ error

Similarly for the other primitive operations.

1.2 Typing For Errors

Before we can go ahead and extend our safety proof, we must give a type to
our new expression. Since no actual computation is performed once we have
encountered an error, we can assign any type to an expression that has failed
(i.e. there is no way to distinguish one error from another).

Γ ` error : τ
ErrorTyp

Preservation

If · ` e : τ and e 7→ e′ then · ` e′ : τ . We have previously shown this proof by
induction over the derivation of e 7→ e′, so we have six new cases to consider.
We show only two.

Rule DivZero e = error
There are no assumptions to this rule, so we have no subderivations to

consider. However, we only need to show that e′ : τ . Since e = error, this is
easy enough.

error : τ By rule

Rule IfError e = error
Again we have no assumptions and so, again, no subderivations. In fact, this

case looks just like the last case!

error : τ By rule

All of our new cases for preservation look exactly like this since each evaluates
(in one step) to the error expression. With these new cases, our extended proof
of preservation is complete.

2



Progress

Here we must extend the theorem: if · ` e : τ then either

i. e value or

ii. e 7→ e′ for some e′ or

iii. e is error

This proof was given by rule induction over the derivation of · ` e : τ , and
we have one new typing rule to consider, so we have one additional case.

Rule ErrorTyp e = error

e is error By assumption

Easy enough! Have we finished? No, because we have extended the induction
hypothesis, we have an additional subcase to consider each time we applied it.

Consider the case for IfTyp:

...
· ` e : bool

...
· ` e1 : τ

...
· ` e2 : τ

· ` if(e, e1, e2) : τ

Previously, we applied the induction hypothesis to the first subderivation to
conclude:

Either e value or e 7→ e′

Now must must consider each of:

Either e value or e 7→ e′ or e is error

The first two subcases are identical to those in our old proof, but we must finish
the third.

e is error By case (iii) of i.h.
if(error, e1, e2) 7→ error By rule

We have shown that there is a step to be made and so progress is maintained.
In each of the applications of the induction hypothesis, we will have a new

subcase, and (if we’ve set things up correctly) we should have a new rule to
apply. If we find a subcase and no rule to apply, it probably means that we’ve
forgotten a rule; conversely, if a new rule doesn’t apply anywhere, it was prob-
ably unnecessary.

(Is it clear now why we don’t want error to be a value? Think about value
inversion with respect to error.)

3



1.3 Coming Attractions

You may feel as though you’ve missed half the fun: we discussed how to raise
errors, but we haven’t given any hint of how handle them. As you might have
guessed from the language we’ve used to talk about errors, we will soon be
covering exactly these ideas in an upcoming lecture on exceptions.

4


